The Effect of Eight Weeks Pilates Exercise on Testosterone and Sex Hormone Biding Globulin (SHBG) in Women with Type 2 Diabetes

Nasibe Zolfaghari¹, Mohammad Faramarzi², Mohammad Afkhami-Ardekani³*, Akbar Azamian jazi², Arezoo Afkhami-Ardekani⁴, Saeedah Jam Ashkezari⁵

Introduction

Diabetes is the most common disease all over the world (1). This is an important and the most crucial health issues for the entire human beings (2). According to the World Health Organization there were 436 million people suffering from diabetes in 2011 and this number will be doubled in 2030(3). The prevalence of diabetes in population older than 30 of Yazd province is %14.52(4).

Regular physical activity plays an important role in the management of type 2 diabetes especially for hyperglycemic control, cardiovascular function improvement, increase
of insulin sensitivity, body fat reduction, and blood pressure control. Regular physical activity causes significant reduction of glycosylated hemoglobin (HbA1c) as well as hyperlipidemia (5).

Physical activity increased insulin sensitivity and stimulate the uptake of glucose in skeletal muscle through glucose transporter type 4, also known as GLUT4 (6,7).

Although the functions of beta cells and insulin resistance are the basic factors for developing type2 diabetes, other parameters such as testosterone and sex hormone binding globulin (SHBG) may be important (8). The studies on both men and women have shown that higher level of SHBG leads lower risk of complication in diabetic patients (9).

There is a significant inverse relationship between SHGB levels and the weight and body mass index (BMI) (10). Many studies show that physical exercises in obese women increase the levels of SHBG (11,12).

Pilates exercises is an exercise program that encourages thought to control the muscles (13). This is an emphasis on the ability of muscle posture to keep the balance of the body and improvement of spine. This exercise program is done in static (standing, sitting, and lie down) positions without jumping or taking a distance (14). Pilates exercises include stretch-strength exercises done in the movement domain of the hinge with controlled speed, focus, and deep breathes. There is no need for especial equipment and it can be done in mattress for people with normal stamina (15-18).

Pilates exercises cause reduction of fat mass and fat percentage without changing the whole body weight (19).

The aim of this study was evaluation of the effect of 8 weeks Pilates exercise on testosterone and SHBG in type 2 diabetic women.

Materials and Methods
This study was conducted in Shahid Sadoughi University Hospital. This clinical trial performed on 24 type2 diabetes women. Twenty four patients divided in 2 groups randomly, included Pilates exercises group (n=12) and control group (n=12).

The samples of the research were the women suffering from type2 diabetes. They were referred to Shahid Sadoughi Hospital. Among them 24 volunteer women were chosen randomly after an interview and checking their medical history. This study approved by medical ethics committee of Shahr-e-kord University. Inform consent was obtained from all participants. The samples were randomly divided in two groups namely the experimental group (those who received the Pilates exercises) and control group, each group included 12 patients. The inclusion criteria were being female, type2 diabetes according to the medical document, age between 40 to 55 years old, fasting blood sugar (FBS) between 150 to 250 mg/dl with the glycated hemoglobin (HbA1C) between 7 to 10.5 percent. The exclusion criteria were suffering from psychological or chronic diseases, having regular physical exercises in the last 3 months, cardiovascular diseases, uncontrolled arrhythmia, sever high blood pressure, and complication of diabetes such as diabetic foot or nephropathy.

The height was measured by Secastadiometer made in Germany. The weight was measured by digital scales made in Iran with the sensitivity of 0.01 Kg without shoe. The thickness of skin fat measured by Harpendencaliper made in Germany. The caliper was put in one-centimeter distance from the finger. All the measurements were written in millimeter and taken from right side of the body. Then the numbers of under skin fat thickness of triple head, iliac, and thigh were put in Jackson and Polak equations. The body density was calculated with Jackson formula at first and then fatness percentage was estimated (20).

Physical exercising protocol
In this exercising protocol the experimental group exercised three days a week for 75 minutes each time. The total number of sessions was 24. The exercises began with
basic level and gradually continued up to the point that the samples could control their spines in different postures. In each session, in addition to previous exercises, new exercises were introduced. This could encourage the patients and keep the difficulty level of the exercises. The speed of progress was in such a way that the patients were told to continue their exercise until they find it painful. Those exercises that were difficult or painful for the patients were modified. The degree of pain or exercise pressure measured by Borg perceive of pressure scale (20). At the beginning of each session the postures (including pelvis and spine) were checked, breathing and standing were controlled (about five min), strength exercises were done based on the coach explanations (about 10 min), Pilates exercises (about 40 min), and at the end of each sessions the patients came back to their normal positions (about five min). The exercises started at a low intensity and got more difficult gradually. Some new exercises were introduced in each session (21). The variables were measured one day before pre-test and one day after the last session.

Biochemical variables measurement method

The samples were taken from 7 A.M to 8 A.M after 12 hours of fasting in sitting position. The blood was centrifuged at the temperature of 4c. The serum was kept at -80 c after separation till laboratory analysis. Blood glucose was measured by enzymatic method using Hitachi 902 auto analyzer.

The level of total testosterone and SHBG were determined using Elisa method by diagnostic biochemkate made in Canada. Sensitivity in measuring SHBG was %1 ng per ml. Testosterone was measured using radio inovaci with the sensitivity of %22 ng per ml.

In this study the height, weight, fat percentage, BMI, FBS, HBA1C, SHBG and total testosterone measurement were done before and after intervention. The normal distribution was tested by Kolmogorov-Smirnov. T student test was used to analyze inter and intra group differences by SPSS 16 software.

Results

Total patients that completed this study were twenty four. Mean age of patients was 47.92 ± 0.76 years. Weight, height and body mass index of patients that completed this study was 74.03 ±3.56 kg, 157.33 ±4.8 cm, and 30.28 ±1.37 km², respectively. Body weight, BMI and WHR decreased significantly in intervention group (P-value:0.02) (Table 1).

Testosterone decreased (P-value:0.01) and SHBG increased significantly in Pilates exercises group (P-value:0.01). It was also indicated that SHBG increased significantly in the experimental group compared with control group. The amount of testosterone in experimental group comparing to the control group is shown in table 2. The data related to the inter group amount of FBS was not changed significantly but we experienced significant reduction of FBS amount in experimental group after Pilates exercise period (-28.08±0.824) (P-value<0.001).

HbA1Cin control group did not change during the exercise period but experienced a significant reduction in experimental group (-0.92±0.004) (P-value <0.003). According to the analysis of variance results, Pilates exercises were significant factors in reducing of HbA1C. The amount of fat did not reduce

| Table 1. Anthropometric features of the samples at the before and after the study |
|--------------------------|-----------------------------|-----------------------------|
| Variable | Stage | Experimental group Mean ± SD | Control group Mean ± SD |
| Age (year) | ------ | 47.92±0.76 | 48.00±0.63 |
| Height (cm) | ------ | 157.33±0.48 | 157.17±0.50 |
| Weight (kg) | Pre-test | 75.03±3.568 | 77.75±1.086 |
| | Post-test | 73.28±3.441 | 77.80±0.86 |
| BMI(kg/m) | Pre-test | 30.28±1.37 | 31.47±0.410 |
| | Post-test | 29.49±1.345 | 31.90±0.311 |
| WHRatio | Pre-test | 87.75±0.94 | 87.50±2.90 |
| | Post-test | 88.92±0.79 | 86.80±3.15 |
significantly in control group but the reduction was significant in experimental group (-0.36±0.005) (P-value <0.05) (Table 2).

Discussion
The present study showed 8-week Pilates exercises increase SHBG and decrease testosterone in diabetic women. After 8 weeks Pilates exercise the SHBG levels increased %13.33 in the experimental group. The results are in accordance to study done by Monninkhof et al. Their study showed that physical exercises have significant increase of SHBG levels (22). Chan et al suggested that increasing the level of physical exercises causes an increase in the SHBG in menopause women. There is an inverse relationship between body weight SHBG and SHBG levels (23,24).

Conclusion
The results of this study showed the positive effects of Pilates exercises that cause increase SHBG levels and decrease free testosterone in diabetic women.

Acknowledgment
We thank gratefully Yazd Diabetes Center and Laboratory Imam Hossain for their enthusiastic comment and facilities.

Table 2. Physical and physiological data in two groups of patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Stage</th>
<th>Experimental group Mean ± SD</th>
<th>Control group Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat (%)</td>
<td>Pre-test</td>
<td>17.67±0.477</td>
<td>18.15±0.412</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>17.31±0.472</td>
<td>18.12±0.402</td>
</tr>
<tr>
<td>FBS (mg/dl)</td>
<td>Pre-test</td>
<td>162.33±12.409</td>
<td>141.25±14.888</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>134.25±11.585</td>
<td>149.83±12.508</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>Pre-test</td>
<td>7.45±0.165</td>
<td>7.37±0.126</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>6.53±0.169</td>
<td>7.48±0.079</td>
</tr>
<tr>
<td>Testosterone (ng/ml)</td>
<td>Pre-test</td>
<td>65.01±6.64</td>
<td>75.33±3.57</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>50.83±3.28</td>
<td>75.50±3.44</td>
</tr>
<tr>
<td>SHBG (ng/ml)</td>
<td>Pre-test</td>
<td>68.17±8.97</td>
<td>54.17±5.36</td>
</tr>
<tr>
<td></td>
<td>Post-test</td>
<td>81.50±11.17</td>
<td>53.08±5.13</td>
</tr>
</tbody>
</table>

References