Volume 13, Issue 3 (volume 13, number 3 2021)                   IJDO 2021, 13(3): 166-172 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Dehghan A, Farzanegi P, Abbaszadeh H. The Effect of Continuous and Interval Training on Glycogen Storage of Gastrocnemius Muscle and Serum Levels of Tumor Necrosis Factor-α & Interleukin-6 in Diabetic Rats. IJDO 2021; 13 (3) :166-172
URL: http://ijdo.ssu.ac.ir/article-1-648-en.html
Associated Professor in Exercise Physiology, Department of Exercise Physiology, Islamic Azad University, Sari Branch, Sari, Iran.
Abstract:   (762 Views)
Objective: Diabetes mellitus (DM) is the most frequent type of metabolic disorder. Here, we evaluated the effect of continuous and interval training on glycogen storage of gastrocnemius muscle and serum levels of tumor necrosis factor-α (TNF-α) and Interleukin-6 (IL-6) in diabetic rats.
Materials and Methods: This study was experimental. 28 rats were randomly divided into four groups. The interval training included 10 sets of one-minute activity with 50% intensity and continuing training included 8 weeks running at the speed of 15 to 28 m/min. Serum levels of IL-6 and TNF-α and glycogen storage of gastrocnemius muscle were measured using specific ELISA Kits. SPSS 23 software was used.
Results: The level of fast blood glucose and TNF-α in diabetic+continuous training and diabetic+interval training groups were significantly lower than the control-diabetic group (P-value< 0.0001). In return, the level of Insulin, IL-6, and glycogen storage in diabetic+continuous training and diabetic+interval training groups were significantly higher than the control-diabetic group (P-value< 0.0001). There was a significant difference in value of glycogen storage between diabetic+continuous training and diabetic+interval training groups (P-value< 0.0001).
Conclusion: Continuous and interval exercises significantly decreased the levels of these inflammatory mediators in the diabetic rats which were subsequently associated with a significant decrease of blood glucose, insulin tolerance, and improvement of glycogen contents. Both interval and continuous exercises made significant changes, but interval exercises had better effects than continuous exercises.
Full-Text [PDF 137 kb]   (334 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/09/14 | Accepted: 2021/09/19 | Published: 2021/09/19

References
1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes research and clinical practice. 2011;94(3):311-21. [DOI:10.1016/j.diabres.2011.10.029]
2. Yaghini N, Mahmoodi M, Asadikaram G, Hassanshahi G, Khoramdelazed H, Arababadi MK. Serum levels of interleukin 10 (IL-10) in patients with type 2 diabetes. Iranian Red Crescent Medical Journal. 2011;13(10):752-3. [DOI:10.1016/j.clinbiochem.2011.08.355]
3. Barbot M, Ceccato F, Scaroni C. Diabetes mellitus secondary to Cushing's disease. Frontiers in endocrinology. 2018;9:284. [DOI:10.3389/fendo.2018.00284]
4. Kharroubi AT, Darwish HM. Diabetes mellitus: The epidemic of the century. World journal of diabetes. 2015;6(6):850. [DOI:10.4239/wjd.v6.i6.850]
5. Fletcher B, Gulanick M, Lamendola C. Risk factors for type 2 diabetes mellitus. Journal of Cardiovascular Nursing. 2002;16(2):17-23. [DOI:10.1097/00005082-200201000-00003]
6. Lowe G, Woodward M, Hillis G, Rumley A, Li Q, Harrap S, et al. Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: the ADVANCE study. Diabetes. 2014;63(3):1115-23. [DOI:10.2337/db12-1625]
7. Jokar MH, Sedighi S, Mohamadkhani A, Moradzadeh M. Inflammatory Cytokines and type 2 diabetes. Koomesh. 2020;22(3):396-403.(in Persian) [DOI:10.29252/koomesh.22.3.396]
8. Ju J, Huang Q, Sun J, Zhao X, Guo X, Jin Y, et al. Correlation between PPAR-α methylation level in peripheral blood and atherosclerosis of NAFLD patients with DM. Experimental and therapeutic medicine. 2018;15(3):2727-30. [DOI:10.3892/etm.2018.5730]
9. Mantovani A. NAFLD and risk of cardiac arrhythmias: Is hyperuricemia a neglected pathogenic mechanism?. Digestive and Liver Disease. 2018;50(5):518-20. [DOI:10.1016/j.dld.2018.02.002]
10. Ryan JD, Armitage AE, Cobbold JF, Banerjee R, Borsani O, Dongiovanni P, et al. Hepatic iron is the major determinant of serum ferritin in NAFLD patients. Liver International. 2018;38(1):164-73. [DOI:10.1111/liv.13513]
11. VanWagner LB. New insights into NAFLD and subclinical coronary atherosclerosis. Journal of hepatology. 2018;68(5):890-2. [DOI:10.1016/j.jhep.2018.01.023]
12. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2011;1813(5):878-88. [DOI:10.1016/j.bbamcr.2011.01.034]
13. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52(3):812-7. [DOI:10.2337/diabetes.52.3.812]
14. Yanai H, Adachi H, Masui Y, Katsuyama H, Kawaguchi A, Hakoshima M, et al. Exercise therapy for patients with type 2 diabetes: a narrative review. Journal of clinical medicine research. 2018;10(5):365-9. [DOI:10.14740/jocmr3382w]
15. Rietman A, Sluik D, Feskens EJ, Kok FJ, Mensink M. Associations between dietary factors and markers of NAFLD in a general Dutch adult population. European journal of clinical nutrition. 2018;72(1):117-23. [DOI:10.1038/ejcn.2017.148]
16. Bellanti F, Villani R, Tamborra R, Blonda M, Iannelli G, di Bello G, et al. Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression. Redox biology. 2018;15:86-96. [DOI:10.1016/j.redox.2017.11.016]
17. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomedicine & Pharmacotherapy. 2005;59(7):365-73. [DOI:10.1016/j.biopha.2005.07.002]
18. Gibala MJ. Interval training for cardiometabolic health: why such a HIIT?. Current sports medicine reports. 2018;17(5):148-50. [DOI:10.1249/JSR.0000000000000483]
19. Akbarzadeh A, Norouzian D, Mehrabi MR, Jamshidi SH, Farhangi A, Verdi AA, et al. Induction of diabetes by streptozotocin in rats. Indian Journal of Clinical Biochemistry. 2007;22(2):60-4. [DOI:10.1007/BF02913315]
20. Batacan Jr RB, Duncan MJ, Dalbo VJ, Connolly KJ, Fenning AS. Light-intensity and high-intensity interval training improve cardiometabolic health in rats. Applied physiology, nutrition, and metabolism. 2016;41(9):945-52. [DOI:10.1139/apnm-2016-0037]
21. Freitas DA, Rocha-Vieira E, Soares BA, Nonato LF, Fonseca SR, Martins JB, et al. High intensity interval training modulates hippocampal oxidative stress, BDNF and inflammatory mediators in rats. Physiology & behavior. 2018;184:6-11. [DOI:10.1016/j.physbeh.2017.10.027]
22. Hajighasem A, Farzanegi P, Mazaheri Z. Effects of combined therapy with resveratrol, continuous and interval exercises on apoptosis, oxidative stress, and inflammatory biomarkers in the liver of old rats with non-alcoholic fatty liver disease. Archives of physiology and biochemistry. 2019;125(2):142-9. [DOI:10.1080/13813455.2018.1441872]
23. Ma Z, Chu L, Liu H, Wang W, Li J, Yao W, et al. Beneficial effects of paeoniflorin on non-alcoholic fatty liver disease induced by high-fat diet in rats. Scientific reports. 2017;7(1):1-0. [DOI:10.1038/srep44819]
24. Chavanelle V, Boisseau N, Otero YF, Combaret L, Dardevet D, Montaurier C, et al. Effects of high-intensity interval training and moderate-intensity continuous training on glycaemic control and skeletal muscle mitochondrial function in db/db mice. Scientific reports. 2017;7(1):1-0. [DOI:10.1038/s41598-017-00276-8]
25. Ostler JE, Maurya SK, Dials J, Roof SR, Devor ST, Ziolo MT, et al. Effects of insulin resistance on skeletal muscle growth and exercise capacity in type 2 diabetic mouse models. American Journal of Physiology-Endocrinology and Metabolism. 2014;306(6):E592-605. [DOI:10.1152/ajpendo.00277.2013]
26. Stølen TO, Høydal MA, Kemi OJ, Catalucci D, Ceci M, Aasum E, et al. Interval training normalizes cardiomyocyte function, diastolic Ca2+ control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circulation research. 2009;105(6):527-36. [DOI:10.1161/CIRCRESAHA.109.199810]
27. Lee S, Park Y, Zhang C. Exercise training prevents coronary endothelial dysfunction in type 2 diabetic mice. American journal of biomedical sciences. 2011;3(4):241. [DOI:10.5099/aj110400241]
28. Trask AJ, Delbin MA, Katz PS, Zanesco A, Lucchesi PA. Differential coronary resistance microvessel remodeling between type 1 and type 2 diabetic mice: impact of exercise training. Vascular pharmacology. 2012;57(5-6):187-93. [DOI:10.1016/j.vph.2012.07.007]
29. Broderick TL, Parrott CR, Wang D, Jankowski M, Gutkowska J. Expression of cardiac GATA4 and downstream genes after exercise training in the db/db mouse. Pathophysiology. 2012;19(3):193-203. [DOI:10.1016/j.pathophys.2012.06.001]
30. Chiş IC, Mureşan A, Oros A, Nagy AL, Clichici S. Protective effects of Quercetin and chronic moderate exercise (training) against oxidative stress in the liver tissue of streptozotocin-induced diabetic rats. Acta Physiologica Hungarica. 2016;103(1):49-64. [DOI:10.1556/036.103.2016.1.5]
31. Mohammad P, Esfandiar KZ, Abbas S, Ahoora R. Effects of moderate-intensity continuous training and high-intensity interval training on serum levels of resistin, chemerin and liver enzymes in streptozotocin-nicotinamide induced type-2 diabetic rats. Journal of diabetes & metabolic disorders. 2019;18(2):379-87. [DOI:10.1007/s40200-019-00422-1]
32. Jiang LQ, Duque-Guimaraes DE, Machado UF, Zierath JR, Krook A. Altered response of skeletal muscle to IL-6 in type 2 diabetic patients. Diabetes. 2013;62(2):355-61. [DOI:10.2337/db11-1790]
33. Kim KB. Effect of different training mode on Interleukin-6 (IL-6) and C-reactive protein (CRP) in type 2 diabetes mellitus (T2DM) patients. Journal of exercise nutrition & biochemistry. 2014;18(4):371. [DOI:10.5717/jenb.2014.18.4.371]
34. Pattamaprapanont P, Muanprasat C, Soodvilai S, Srimaroeng C, Chatsudthipong V. Effect of exercise training on signaling of interleukin-6 in skeletal muscles of type 2 diabetic rats. The review of diabetic studies: RDS. 2016;13(2-3):197. [DOI:10.1900/RDS.2016.13.197]
35. Hall B, Zebrowska A, Kaminski T, Stanula A, Robins A. Effects of hypoxia during continuous and intermittent exercise on glycaemic control and selected markers of vascular function in type 1 diabetes. Experimental and Clinical Endocrinology & Diabetes. 2018;126(04):229-41. [DOI:10.1055/s-0043-110482]
36. Zebrowska A, Hall B, Maszczyk A, Banas R, Urban J. Brain-derived neurotrophic factor, insulin like growth factor-1 and inflammatory cytokine responses to continuous and intermittent exercise in patients with type 1 diabetes. Diabetes research and clinical practice. 2018;144:126-36. [DOI:10.1016/j.diabres.2018.08.018]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb