Volume 14, Issue 1 (volume 14, number 1 2022)                   IJDO 2022, 14(1): 20-28 | Back to browse issues page


XML Print


Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.Innovative Medical Research Center, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
Abstract:   (1013 Views)
Objective: Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases. The CYP450 plays an important role in the biosynthesis of steroid hormones and the hormonal activity is mediated by the androgen receptor (AR) and the enzyme 5-alpha reductase (5αR). Therefore, this study aimed to investigate the relationship between these factors in T2DM.
Materials and Methods: This case-control study was performed with 60 volunteers, including 30 diabetics and 30 healthy individuals. Demographic information of individuals was recorded and levels of CYP450, 5αR, and AR were measured in serum by ELISA. Data were analyzed by SPSS v.26 version and the significance level was less than 5%.
Results: There were no significant difference  between diabetics and healthy individuals in gender (P= 1), body mass index (P= 0.199), diastolic pressure(P= 0.466), uric acid(P= 0.202), creatinine(P= 0.627), low-density lipoprotein (P= 0.572), high-density lipoprotein(P=0.692); But there was a significant difference in systolic pressure(P= 0.034), triglyceride(P= 0.0001), and insulin(P= 0.003), between diabetics and healthy individuals. The distribution of CYP450, 5αR and AR in two groups shows that the level of all three factors is higher in diabetic people (P= 0.0001). Also, glycosylated hemoglobin and insulin have a direct relationship with CYP450 (P= 0.0001, R=0.494; P= 0.043, R=0.263), 5αR (P= 0.0001, R=0.808; P= 0.016, R=0.309) and with AR (P= 0.0001, R=0.836; P= 0.011, R=0.326).
Conclusion: These results showed that there was a relationship between the levels of CYP450, 5αR, and ARs with T2DM which may explain hormonal changes in diabetic people and the different responses to treatment.
Full-Text [PDF 694 kb]   (327 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/09/28 | Accepted: 2022/01/8 | Published: 2022/02/26

References
1. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Physical therapy. 2008;88(11):1254-64. [DOI:10.2522/ptj.20080020]
2. Leu JP, Zonszein J. Diagnostic criteria and classification of diabetes. InPrinciples of diabetes mellitus.Springer, Boston, MA.2010:107-15. [DOI:10.1007/978-0-387-09841-8_7]
3. Zaied C, Abid S, Mtiraoui N, Zellema D, Achour A, Bacha H. Cytochrome P450 (CYP3A4* 18) and glutathione-S-transferase (GSTP1) polymorphisms in a healthy Tunisian population. Genetic testing and molecular biomarkers. 2012;16(10):1184-7. [DOI:10.1089/gtmb.2012.0095]
4. Gravel S, Chiasson JL, Dallaire S, Turgeon J, Michaud V. Evaluating the impact of type 2 diabetes mellitus on CYP450 metabolic activities: protocol for a case-control pharmacokinetic study. BMJ open. 2018;8(2):e020922. [DOI:10.1136/bmjopen-2017-020922]
5. Wang Z, Hall SD, Maya JF, Li L, Asghar A, Gorski JC. Diabetes mellitus increases the in vivo activity of cytochrome P450 2E1 in humans. British journal of clinical pharmacology. 2003;55(1):77-85. [DOI:10.1046/j.1365-2125.2003.01731.x]
6. Jarrar YB, Al-Essa L, Kilani A, Hasan M, Al-Qerem W. Alterations in the gene expression of drug and arachidonic acid-metabolizing Cyp450 in the livers of controlled and uncontrolled insulin-dependent diabetic mice. Diabetes, metabolic syndrome and obesity: targets and therapy. 2018;11:483. [DOI:10.2147/DMSO.S172664]
7. Oh SJ, Choi JM, Yun KU, Oh JM, Kwak HC, Oh JG, et al. Hepatic expression of cytochrome P450 in type 2 diabetic Goto-Kakizaki rats. Chemico-biological interactions. 2012;195(3):173-9. [DOI:10.1016/j.cbi.2011.12.010]
8. Trikkalinou A, Papazafiropoulou AK, Melidonis A. Type 2 diabetes and quality of life. World journal of diabetes. 2017;8(4):120. [DOI:10.4239/wjd.v8.i4.120]
9. Boeri L, Capogrosso P, Ventimiglia E, Schifano N, Montanari E, Montorsi F, Salonia A. Sexual dysfunction in men with prediabetes. Sexual medicine reviews. 2020;8(4):622-34. [DOI:10.1016/j.sxmr.2018.11.008]
10. La Vignera S, Condorelli R, Vicari E, D'Agata R, Calogero AE. Diabetes mellitus and sperm parameters. Journal of andrology. 2012;33(2):145-53. [DOI:10.2164/jandrol.111.013193]
11. Spark RF. Testosterone, diabetes mellitus, and the metabolic syndrome. Current urology reports. 2007;8(6):467-71. [DOI:10.1007/s11934-007-0050-4]
12. Navarro‐Casado L, Juncos‐Tobarra MA, Chafer‐Rudilla M, De Onzono LÍ, Blazquez‐Cabrera JA, Miralles‐Garcia JM. Effect of experimental diabetes and STZ on male fertility capacity. Study in rats. Journal of andrology. 2010;31(6):584-92. [DOI:10.2164/jandrol.108.007260]
13. Hackett G. Type 2 diabetes and testosterone therapy. The world journal of men's health. 2019;37(1):31-44. [DOI:10.5534/wjmh.180027]
14. Kumar G, Barboza-Meca JJ. 5 Alpha reductase deficiency. StatPearls [Internet]. 2020.
15. Yu IC, Lin HY, Sparks JD, Yeh S, Chang C. Androgen receptor roles in insulin resistance and obesity in males: the linkage of androgen-deprivation therapy to metabolic syndrome. Diabetes. 2014;63(10):3180-8. [DOI:10.2337/db13-1505]
16. DJHMB B: Androgen physiology, pharmacology and abuse. 2015.
17. Mattack N, Devi R, Kutum T, Patgiri D. The evaluation of serum levels of testosterone in type 2 diabetic men and its relation with lipid profile. Journal of clinical and diagnostic research: Journal of Clinical and Diagnostic Research. 2015;9(1): BC04-BC07. [DOI:10.7860/JCDR/2015/11049.5381]
18. Gan D. Diabetes atlas. International Diabetes Federation; 2003.
19. Barnes AS. The epidemic of obesity and diabetes: trends and treatments. Texas Heart Institute Journal. 2011;38(2):142.
20. Naqvi S, Naveed S, Ali Z, Ahmad SM, Khan RA, Raj H, et al. Correlation between glycated hemoglobin and triglyceride level in type 2 diabetes mellitus. Cureus. 2017;9(6): e1347. [DOI:10.7759/cureus.1347]
21. Kim ES, Kwon HS, Ahn CW, Lim DJ, Shin JA, Lee SH, et al. Serum uric acid level is associated with metabolic syndrome and microalbuminuria in Korean patients with type 2 diabetes mellitus. Journal of Diabetes and its Complications. 2011;25(5):309-13. [DOI:10.1016/j.jdiacomp.2010.09.004]
22. Al Jarah T, Pouresmaeil V, Es-Haghi A. Relationship between Serum Selenium and Copper Levels with Insulin Resistance in Patients with Diabetes type 2: A Case Control Study. Open Access Journal of Biogeneric Science and Research.2020;4(1). [DOI:10.46718/JBGSR.2020.05.000120]
23. Dhindsa S, Miller MG, McWhirter CL, Mager DE, Ghanim H, Chaudhuri A, et al. Testosterone concentrations in diabetic and nondiabetic obese men. Diabetes care. 2010;33(6):1186-92. [DOI:10.2337/dc09-1649]
24. Wang CP, Hung WC, Yu TH, Chiu CA, Lu LF, Chung FM, et al. Genetic variation in the G-50T polymorphism of the cytochrome P450 epoxygenase CYP2J2 gene and the risk of younger onset type 2 diabetes among Chinese population: potential interaction with body mass index and family history. Experimental and clinical endocrinology & diabetes. 2010;118(06):346-52. [DOI:10.1055/s-0029-1243604]
25. Ruzilawati A, Suhaimi AM, Gan S: Genetic polymorphisms of CYP3A4: CYP3A4* 18 allele is found in five healthy Malaysian subjects. Clinica Chimica Acta 2007, 383(1-2):158-62. [DOI:10.1016/j.cca.2007.05.004]
26. Dostalek M, Court MH, Yan B, Akhlaghi F. Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus. British journal of pharmacology. 2011;163(5):937-47. [DOI:10.1111/j.1476-5381.2011.01270.x]
27. Gandhi J, Dagur G, Warren K, L Smith N, R Sheynkin Y, Zumbo A, et al. The role of diabetes mellitus in sexual and reproductive health: an overview of pathogenesis, evaluation, and management. Current diabetes reviews. 2017;13(6):573-81. [DOI:10.2174/1573399813666161122124017]
28. Mauvais-Jarvis F. Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends in Endocrinology & Metabolism. 2011;22(1):24-33. [DOI:10.1016/j.tem.2010.10.002]
29. Al Hayek AA, Khader YS, Jafal S, Khawaja N, Robert AA, Ajlouni K. Prevalence of low testosterone levels in men with type 2 diabetes mellitus: a cross-sectional study. Journal of family & community medicine. 2013;20(3):179. [DOI:10.4103/2230-8229.122006]
30. Fukui M, Soh J, Tanaka M, Kitagawa Y, Hasegawa G, Yoshikawa T, Miki T, Nakamura N. Low serum testosterone concentration in middle-aged men with type 2 diabetes. Endocrine journal. 2007:0711080012. [DOI:10.1507/endocrj.K07-077]
31. Lee SS, Yang YW, Tsai TH, Kuo YH, Chuang HY, Lee CC,et al. 5‐alpha‐reductase inhibitors and the risk of diabetes mellitus: A nationwide population‐based study. The Prostate. 2016;76(1):41-7. [DOI:10.1002/pros.23097]
32. Traish AM, Guay AT, Zitzmann M. 5α-Reductase inhibitors alter steroid metabolism and may contribute to insulin resistance, diabetes, metabolic syndrome and vascular disease: a medical hypothesis. Hormone molecular biology and clinical investigation. 2014;20(3):73-80. [DOI:10.1515/hmbci-2014-0025]
33. Chung WM, Chang WC, Chen L, Lin TY, Chen LC, Hung YC, et al. Ligand-independent androgen receptors promote ovarian teratocarcinoma cell growth by stimulating self-renewal of cancer stem/progenitor cells. Stem cell research. 2014;13(1):24-35. [DOI:10.1016/j.scr.2014.04.003]
34. Al-Kuraishy HM, Al-Gareeb AI. Erectile dysfunction and low sex drive in men with type 2 DM: The potential role of diabetic pharmacotherapy. Journal of clinical and diagnostic research: Journal of Clinical and Diagnostic Research. 2016;10(12):FC21- FC26. [DOI:10.7860/JCDR/2016/19971.8996]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.