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Introduction
 

nfertility affects 13-18% of couples, and 
growing evidence from clinical and 
epidemiological studies suggests an 

increasing incidence of male reproductive 
problems (1). Diabetes has been associated 

with reproductive impairment in both men and 
women (2-4). Although the pathophysiology 
of reproductive derangements in young 
diabetic women has been largely 
investigated(5,6), few studies have been 
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Abstract 
Objective: Previous studies have indicated the hyperglycemia-induce 
cell death in various tissues such as brain, kidneys, liver and especially 
in the testis. Recent studies have reported that diabetes can trigger male 
infertility. In this study we report the histological analysis of the testis 
tissue after diabetes type 1 induction in wistar rats. 
Materials and Methods: At various time intervals after diabetes 
type 1 induction, testicular cell was assessed in the controls and in the 
diabetic rats. Hyperglycemia was induced in male wistar rats by 
intraperitoneal injection of drug streptozotocin (STZ). At different time 
points (4, 6, 8 and 20 weeks) post diabetes type 1 induction, rats were 
euthanized and testicular tissues were removed for histological analysis. 
Their testes were fixed in formaldehyde (37%), embedded in paraffin 
and then sectioned (4µm thick). They were further deparaffinized, 
stained with Hematoxylin-Eosin (H&E) and DAPI, and observed under 
light and fluorescence microscope, respectively.  
Results: Histological results showed reduced cell density in testis, 
which indicates that diabetes type 1 and hyperglycemia conditions 
impair normal cell density in testis tissue. The changes in seminiferous 
tubules from 4 weeks to 20 weeks were also observed. The testicular 
histology of diabetic animals shows that the maximum reduction in cell 
density occurred after 20 weeks. 
Conclusion: The induced diabetic condition provides evidence that 
hyperglycemia plays an important role in pathogenesis of diabetes, and 
also indicated that chronic hyperglycemia eventually leads to cell death 
and male infertility. Probably, the consequent of inflammatory 
condition of hyperglycemia resulted in apoptotic-related gene products 
and testicular dysfunction which has an important implication for 
infertility, and offer new chances for therapeutic interventions. 
Keywords: Diabetes, Infertility, Streptozotocin, Testis 
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conducted in men. The defective 
spermatogenesis may be the consequence of a 
direct testicular effect from the diabetes (7,8). 
Testicular cell apoptosis is an important event 
of diabetes and hyperglycemia conditions 
(9,10). However, the mechanisms that cause 
inflammation and apoptosis are beginning to 
be emerged. Although several studies have 
been reporting the role of diabetes in the 
infertility (11,12) but the morphological 
changes and time course of cell death after 
diabetes type 1 induction have not been 
reported so far. The reduction of tissue cell 
density after diabetes induction is a major 
factor in infertility (13,14). Several 
mechanisms are proposed for testicular 
apoptosis and cell death in diabetes. For 
example, hyperglycemia can induce ROS 
production that leads to cell apoptosis in 
various tissues such as testis (2,15,16). These 
defects are related to early apoptosis in 
diabetic patient (17). In this study, we 
evaluated the effect of chronic hyperglycemia 
on morphological cell density of rat testes 
tissue in various time intervals after diabetes 
induction.  
 
Materials and Methods 

Animals  
In this research, adult Wistar rats (6-8 weeks 
old and 200–250 g weight) were mated and the 
pups were grown to 6-8 weeks old. They were 
housed and maintained at a constant 
temperature of 20-22º C with a relative 
humidity of 55% and standard 12:12 h light-
darkness cycles, and had free access to 
standard rat chow ad libitum and tap water, 
and allowed 1 wk acclimatizing to the 
laboratory conditions before experiments. All 
the procedures including diabetes induction 
and sacrifice operation were in strict 
accordance with Iranian legislation on use and 
care of laboratory animals. 

Hyperglycemic rat model: 
Adult male rats (6-8 weeks old, weighing 200–
250 g) were intra-peritoneally injected with a 
single dose of streptozotocin (STZ; Sigma-

Aldrich, Germany) at 55 mg/kg body weight, 
dissolved in 10 mM sodium citrate buffer (pH 
4.5) after 12 h of food deprivation. Rats 
injected with citrate alone without STZ served 
as the normal control. On day 2 after STZ 
induction, a blood sample was obtained from 
the rat tail vein, and random glucose levels 
were measured using the One-Touch Ultra 2 
blood glucose monitoring system (LifeScan, 
Mountainview, CA). For the present study, 
hyperglycemia was defined as a blood glucose 
level of 20 mM or higher. Citrate buffer-
treated rats were used as a normoglycemic 
control (blood glucose <12 mM). Groups of 5 
diabetes rats were sacrificed after CO2 
anesthesia at weeks 4, 6, 8 (early phase of 
diabetes progression), 20 (late phase of 
diabetes progression). Blood was collected by 
cardiac puncture for biochemical analysis, and 
testis tissues were removed for further 
analysis. Five control rats in each above-
mentioned time point were also sacrificed and 
studied. 

Tissue preperation and testicular histology 
analysis: 
In specified time points (4, 6, 8 and 20 weeks) 
post diabetes type 1 induction and also in 
control groups, rats were euthanized and after 
laparatomy, testis tissues were dissected. One 
of testicular samples was immediately fixed 
for 1 day at room temperature in formaldehyde 
(10%) for histological examinations. The 
tissues were processed according to the routine 
program of a tissue processor, and paraffin 
blocks were prepared. Specimens were cut in 4 
µm-thick sections by a rotary microtome, and 
mounted on gelatin-coated glass slides. Testis 
sections (4µm) were de-paraffinized in xylene, 
rehydrated in decreasing concentrations of 
alcohol in water, and stained with 
hematoxyline-eosin (HE) and DAPI reagent 
(Sigma chemicals Co, St. Louis, MO) and 
observed under the light and fluorescence 
microscopy, respectively, for evaluation of 
testicular cell density. The cell nuclei were 
stained with DAPI staining. 
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Results 

Biochemical analysis of type 1 diabetes 
induction in rats. 
Diabetes was induced in rats to evaluate 
whether high blood glucose affects 
morphological testis cell density. Rats with 
blood glucose of >250-300 mg/dL were 
defined as diabetic rats. Blood glucose levels 
on the day (4, 6, 8 and 20 after diabetes type 1 
induction) of organ removal was <110 mg/dL 
for healthy groups and > 250 mg/dL for 
diabetic groups. STZ-treated rats showed 
typical features of diabetes, including 
significant hyperglycemia (blood 
glucose≥250mg/dl), insulin deficiency, and 
slow weight increase (BW<200gr), compared 
to normal controls (Figures 1,2,3). 

Histological examination of testes obtained 
from STZ-induced type 1 diabetic rats:  
Histological sections of testis were taken from 
the rats at specific time points(4, 6, 8 and 20 
weeks) post diabetes type 1 induction and 
compared to the untreated control group which 
revealed progressive reduction of density in 
various specific times after diabetes type 1 

induction. These changes were not present in 
the non-diabetic rats. H & E staining of testes 
tissue sections from adult diabetic rats 
demonstrated general structure changes and 
gradual testicular cell density reduction at time 
point intervals (week 4, 6, 8 and 20) post 
diabetes induction. Also, DAPI staining of the 
same tissue sections confirmed the former data 
and exhibited that the number of nuclei in the 
testes from diabetic rats reduced significantly 
after week 4, 6, 8 and 20, post diabetes 
induction (Figure 4). 
 
Discussion 
The present study was designed to analyze the 
effects of induced hyperglycemia (diabetes 
type 1) following STZ administration on 
morphological structure of testis tissues of 
male wistar rats. Type 1 diabetes (T1D) is an 
organ-specific autoimmune disease that results 
from T cell-mediated destruction of insulin-
producing pancreatic beta cells in genetically 
predisposed individuals (18). 
In order to induce hyperglycemia and diabetes 
type 1, we used STZ drug. The major effect of 
STZ is on pancreatic Langerhans β cells. Thus, 

 
Figure 1. Blood glucose concentration in STZ-untreated control and STZ-treated diabetic groups at specific times (4, 6, 
8 and 20 weeks) after diabetes type 1 induction.  
Comparison (Mean±SD) with the control group. *P<0.05, Sample size: 5 male rats, Statistical methods: ANOVA and 
student t-test. 
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it seems that the changes appearing in other 
organs after STZ administration are related to 
diabetes and not to STZ. However, some of 
the changes may occur due to the acute toxic 
effect of STZ. Analysis of variance indicated 
that the groups which received STZ had less 
body weight than the other groups. The results 

of blood glucose determination showed that 
blood glucose levels in diabetic groups 

increased more than non-diabetic groups. 
Elevated blood glucose is due to insulin-
secreting beta cell destruction and reduced 
insulin levels.  

 
Figure 2. Changes in body weight in the study groups during the experiment. Comparison (Mean±SD) of body weight 
between STZ-untreated control and STZ-treated diabetic group at specific time after diabetes type 1 induction, 
*P<0.05. 
Sample size: 5 male rats 
Statistical methods: ANOVA and student t-test 

 
Figure 3. Blood insulin concentration in control and diabetic indicate STZ-untreated control and STZ-
treated diabetic group at specific times after diabetes type 1 induction.  
Comparison (Mean±SD) with the control group. *P<0.05, Sample size: 5 male rats, Statistical methods: 
ANOVA and student t-test. 
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Histological studies in adult diabetic rats 
showed testicular cell density reduction. H &E 
staining demonstrated general structure of 
tissue sections and DAPI staining showed total 
number of nuclei in tissue sections. As the 
photomicrographs show (Figure 4), the nuclear 
cell density was declined in various times after 
diabetes type 1 induction, especially after 20 
weeks. One of the proposed mechanisms of 
testicular cell density reduction is 
overexpression of apoptotic and pro-
inflammatory mediators in the testis tissue, 
which can stimulate cell death (19). Therefore, 
the size and volume of testis tubules and hence 
testis volume are decreased in various diabetic 
groups. Diabetes changes cellular 
microenvironment, and leads to several 
unwanted effects (20).  
A number of studies have shown that the 
inflammation induced by hyperglycemia is the 
main mechanism of the pathogenesis of cell 

apoptosis and diabetic infertility (2,15,21,22). 
So, inflammation has a prominent role in 
apoptosis in various organs in hyperglycemic 
condition(23,24). It is said that the innate 
immune system plays a role in over-expression 
of pro-inflammatory cytokines in diabetic 
condition (25-28). Inflammatory cell-related 
apoptosis contributes to organ damage and 
micro and macro vascular complications(21). 
There are compelling evidences that the innate 
immune system plays a key role in early 
mechanisms triggering diabetes (26,29,30). A 
number of studies demonstrated that toll like 
receptors (TLRs) mediate innate immune 
responses and contribute to the induction of 
diabetes (30,31). Also, few studies reported 
that innate immunity and TLRs have a tight 
correlation with apoptosis and cell death (32-
35). Also, it is demonstrated that in male 
infertile patients, oxidative damage has a 
critical role in cell apoptosis (2,36).  

Figure 4. Histological sections of testis tissues from the STZ-untreated control group and the STZ-treated rats at the 
specific time points 4, 6, 8 (early phase) and 20 weeks (late phase) after diabetes type 1 induction. By subjective 
visual evaluation, the number of testicular cell density was reduced in all of the diabetic rats, especially after 20 
weeks. The changes in seminiferous tubules from 4 weeks to 20 weeks are seen. The testicular histology of diabetic 
animals shows that the maximum reduction in cell density occurred after 20 weeks. 
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Several cellular and molecular mechanisms are 
proposed for cell apoptosis in diabetic 
subjects. Previous studies indicated that 
diabetes induces advanced glycation end 
products (AGEs). AGEs contribute to reactive 
oxygen species (ROS) production that lead to 
oxidative stress and cell death(19,20). Also, 
AGEs in diabetic conditions induce 
inflammation via over-expression of pro-
inflammatory cytokines and chemokines such 
as TNF-α and IL-1β in various cells especially 
monocytes and macrophages (20,21). Pro-
inflammatory cytokines increase endothelial 
permeability and induce leukocyte adhesion to 
vascular endothelium (20). Pro-inflammatory 
secretion by leukocytes leads to destruction of 
various tissues in diabetic subjects. The up-
regulation of pro-inflammatory cytokines 
following hyperglycemia activates nuclear 
factor kappa B (NF-κB) which translocate 
from the cytoplasm to the nucleus, and 
regulates the over-expression of inflammatory 
response leading to cell impairment and 
apoptosis. Also, pro-inflammatory cytokines 
such as IL-1β can trigger the over-expression 
of Fas and induce Fas-mediated apoptosis 
(25). Other mechanisms are also proposed for 
cell apoptosis in diabetic conditions. 
Hyperglycemia causes to cell death through 
increase oxidative stress, release of 
intracellular Ca2+, activation of mitogenic 
agents and impairment of protein kinases cell 
signaling pathways (25,37,38). A study on 
human umbilical vein endothelial cells shown 
that hyperglycemia enhanced apoptosis and 
down-regulated vascular endothelial growth 
factor (VEGF). Elevated glucose in diabetic 
conditions up-regulated Bax protein and 
increased the Bax/Bcl2 ratio that can activate 
caspase-3 and initiate apoptosis (39,40). High 
glucose may initiate apoptosis by activating c-
Jun NH2-terminal kinase/stress activated 
protein kinase (JNK/SAPK)(41). Another 
molecular mechanism proposed for apoptosis 
in diabetic condition is the over-expression of 
cyclooxygenase 2 (COX-2) and prostaglandin 
E2 (PGE2) and next a caspase-3 activation that 
triggers apoptosis. Hyperglycemia can initiate 

NF-κB activation and up-regulation of COX-2 
that lead to PGE2 production and cell death 
(42) Also, diabetic condition induce cell 
apoptosis through up-regulation of AGE 
receptors (RAGE) that caused to over-
expression of pro-apoptotic genes including 
p38, c-Jun N-terminal kinase(JNK), caspase-8 
and caspase3 (20). A main target organ 
affected after diabetes is the testis. Some 
previous studies reported that the diabetes can 
affect kidney (43,44), so, hyperglycemic 
conditions can induce apoptosis in renal cells 
and cause diabetic nephropathy (45-47). In 
addition to hyperglycemia, other factors such 
as fatty acids can contribute in pathological 
aspects of diabetes. For example, ectopic lipid 
accumulation can initiate cellular apoptosis 
and testicular dysfunction (48). Several studies 
reported that high concentration of glucose can 
induce ROS and pro-inflammatory mediators 
in diabetic conditions (20). Over-expression of 
these mediators can induce apoptotic cell 
signaling in various organs. Excessive 
accumulation of ROS in cells leads to 
oxidative stress (48). Probably, hyperglycemia 
initiates testis-cell apoptosis by intrinsic 
pathways including molecules Bcl-2, Mcl-1 
and Bcl-xl. Also, pro-inflammatory cytokines 
such as tumor necrosis factor (TNF)-α, 
interleukin (IL)-1β and IL-6 that produced by 
NLRP3 inflammasome activation may trigger 
testicular cell death (49,50). Recent studies 
reported that chronically-high glucose can 
initiate the over-expression of innate immune 
systems such as NLRP3 inflammasome (50). It 
seems that there is a major link between 
metabolic abnormalities and cell death 
pathways in diabetic conditions (20). Our 
results showed that diabetes type 1 leads to 
reduced cell density and increased apoptosis in 
testis tissue in various time points after 
diabetes type 1 induction. The highest 
reduction of cell density was observed after 20 
weeks. Therefore, studies on the precise role 
of target genes in diabetes and cell death 
signaling pathways may yield potential 
molecular targets for developing novel 
therapeutics for control and prevention of 
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diabetic complications including diabetic 
infertility.  
 
Conclusion 
Hyperglycemia and diabetes mellitus may 
adversely cause cell death and lead to cell 
apoptosis in testicular tissues through creating 
the AGEs, inducing pro-inflammatory 
responses, over-expression of ROS and 
initiating cell apoptosis pathway, all of which 

lead to impairment of spermatogenesis and 
male infertility. 
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