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Introduction

 
ype 2 diabetes (T2D) is a worldwide 

concern. Based on International 

Diabetes Federation, 285 million adults 

aged 20–79 years suffered from diabetes in 

2010. About 60% of them located in Asia. 

Almost 80% of people with diabetes live in 

developing countries. Around 95% of diabetic 

patients suffer from T2D (1-3).Worryingly, 

new findings show decrease in the onset age of 

T2D. The disease is more frequently reported 

among young Africans and Pima Indians (4). 

T2D in Asia differs from the other world 

regions; since it has developed in younger age 

group, and in people with much lower body-
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Abstract 
Objective: Type 2 diabetes (T2D) as a complex disease is 

the result of genetically heterogeneous factors and 

environmental issues interaction. Linkage and small-scale 

candidate gene studies were successful in identification of 

genetic susceptibilities of monogenic form of diseases. 

However, they were largely unsuccessful while applying to 

the more common forms of disease. By designing Genome 

Wide Association studies (GWAs), the new windows open 

to genetic approaches. So far, around 153 variant were 

discovered for T2D and missing rare variants are waiting to 

be discovered. The new findings are beneficial to explain 

molecular signaling and pathways responsible for 

pathophysiology of T2D, which offered opportunities for 

the development of novel therapeutic and preventive 

tactics. The GWAs findings need to be confirmed in on 

going researches. In this review, we address, genetic 

susceptibilities related to T2D since 2007. Also challenge 

advantages and disadvantages of GWAs and discuss about 

the next confirmatory approaches need to be done.  

Keywords: Genome Wide Association Studies, T2D, Insulin 

resistance, High blood glucose, Re-sequencing. 
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mass index (BMI) (5). This review will 

highlight the genetic discoveries of T2D. 
 

T2D and Metabolic traits  
T2D is a complex metabolic disease (6). 

Complex disease like T2D and cancers are the 

results of both environmental and genetic risk 

factors and also intrauterine environment. 

However they do not follow a Mendelian 

pattern of inheritance and cannot be described 

by a single gene disorder, so this hypothesis 

“common illnesses common variants” help to 

understanding mechanisms of these kind of 

diseases (7,8). 

Environmental factors are largely responsible 

for T2D. Decreased physical activity and 

increased fat consumption lead to 

augmentation of nutrient storage. This kind of 

Long-term fatty diet is associated not only 

with the progress of obesity but also with 

reductions in insulin release (9). 

Environmental factors will be bolded while the 

genetic abnormalities already exist. Moreover, 

changes in the amounts of dietary 

carbohydrate and fat can affect both insulin 

sensitivity and insulin release in three days, 

while obesity does not exist (10). Other 

environmental condition that should be 

considered is in utero environment. Poor diet 

can modify metabolisms, results in a tissue 

adaptation that favors the storage of nutrients 

(11). Entirely, these environmental changes 

and genetic risk factors are responsible for 

developing T2D.  

Studies of first-degree relatives highlight that 

Insulin resistance and impaired beta cell 

function are the main complication of diabetes, 

which leads to high blood glucose (12). 

Normal glucose homeostasis is conserved by a 

fine balance between insulin secretion and 

insulin sensitivity of the peripheral tissues. 

Insulin resistance is a key feature of the 

metabolic syndrome and often progresses to 

T2D. Also Insulin resistance is the main 

connection between obesity and T2D. Insulin 

resistance in both of these conditions is 

manifested by decreased insulin-stimulated 

glucose transport and metabolism in 

adipocytes and skeletal muscle and by 

impaired suppression of hepatic glucose output 

(13). 

 

Genetics of T2D before GWAs 
Uncovering genetic risk factor provided better 

vision of underlying mechanisms. Genetic 

studies of T2D before the GWA revolution 

could be divided in 4 groups; studying the 

pattern of inheritance, linkage studies, 

association studies on candidate genes and 

microarray studies. 

The genes involved in monogenic form of 

diabetes mellitus (MODY, Neonatal diabetes, 

mitochondrial diabetes and syndromes of 

severe insulin resistance) were discovered by 

studying pattern of inheritance. The discovered 

genes related to beta cell dysfunction in 

MODY diabetes are; HNF4A (14-16), GCK 

(15), PDX1 (16), TCF2 (17), NEUROD1 (18) 

and KLF11 (19). The genes; KCNJ11 (20), 

ABCC8 (21), EIF2AK3 (20), PLAGL1 (22), 

HYMA1 (23), PTF1A (24) and INS (25) are 

reported in monogenic form of Neonatal 

diabetes which cause beta cell dysfunction. 

INSR(26)and ACT2 are monogenic cause of 

insulin resistance in severe insulin resistance 

syndrome.  

Candidate genes, based on their indirect 

physiologic role, seem to contribute to the 

disease. Studying variations in candidate genes 

instead of discovering new pathways leading 

toT2D, verifies the defined role of genes. 

These surveys usually have been based on 

linkage analysis. Since 2006, three studies 

reported by linkage analysis; amino acid 

substitution in the nuclear receptor and adipo-

genic transcription factors, PPARγ (27), 

Glu23Lys variant in the KCNJ11 gene 

associated with insulin signaling(28), 

polymorphism (K121Q) in the insulin action 

inhibitor ENPP1 and IRS1, IRS2 and 

phosphatidylinositol 3- kinase (29-31). One of 

the outstanding exception gene discovery by 

linkage studies is TCF7L2 that confirmed in 

later studies (32). 
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Microarray approach is another way of 

defining genetic variation in T2D. Two 

discoveries since 2006 are covering here. One 

of them is defects in skeletal muscle of T2D 

patients related to decrease in the expression 

of nuclear-encoded genes (PGC- 1α and PGC-

1β) involved in mitochondrial oxidative 

phosphorylation (33). The other one is 

transcription factor ARNT/Hif1b that 

influenced on the expression of many other 

genes related to insulin pathway and glucose 

sensing (34). 
 

Overview of GWA studies 
Before 2005, family linkage and SNPs-based 

studies were available for discovering genomic 

loci having influence on complex disease and 

traits; however on 2005, a new generation of 

Table 1. Genetic susceptibilities related to type 2 diabetes since 2007 
Year Locus 

2007 
IGF2BP2 (47,48), CDKAL1 (47,49,50), SLC30A8 (46-48), CDKN2A/2B (47,49,50), HHEX (46,47), FTO 

(48,50-52), HNF1B (53), PPARG (47,48), WSF1 (54), TCF7L2 (46-51,55), KCNJ11 (47,48,50) 

2008 
NOTCH2 (56,57), THADA (56,57), ADAMSTS9 (56,57), JAZF1 (56,57), CDC123/CAMK1D (56,57), 

TSPAN8/ LGR5 (56,57), WSF1 (56), TCF7L2 (57), KCNQ1 (58), DCD (57), MC4R (59,60), FTO (57) 

2009 
IRS1 (61), HCCA2 (62), SFRS10 (63), WSF1 (61), CDKAL1 (64), SLC30A8 (64), CDKN2A/2B (64), HHEX 

(64), TCF7L2 (64,65), KCNJ11 (65), KCNQ1 (64), MTNR1B (66), MC4R (63), FTO (65) 

2010 

DUSP9 (67), GCKR (68) ,BCL11A (67), G6PC2 (68), ADCY5 (68,69), WFS1 (67), ZBED3 (67), 

DGKB/TMEM195 (68), GCK (68), KLF14 (67), TP53INP1 (67), GLIS3 (68), TLE4 (CHCHD9) (67), ADRA2A 

(68,70), CENTD2 (67), CRY2 (68), FADS1 (68), MTNR1B (67,71), HMGA2 (67), HNF1A (67), IGF1 (68), 

C2CD4A/B (72), PRC1 (67), ZFAND6 (67), PTPRD (71), SRR (71), PROX1 (68), RBMS1/ITGB6 (73), 

FAM148B (68), PPARG (67), UBE2E2 (72), CDKAL1 (67), JAZF1 (67), SLC30A8 (67,68), CDKN2A/2B 

(67,72), CDC123/CAMK1D (74), HHEX (67), TCF7L2 (67), KCNQ1 (67,70), SPRY2 (74), FTO (67) 

2011 
ST6GAL1 (75), C6orf57 (76),VPS26A (75), ARAP1 (77), MADD (77), HNF1A (78), AP3S2 (75), HMG20A 

(75), VPS13C/C2CD4A/B (77), HNF4A (75) 

2012 

MACF1 (79), BCL11A (6), GRB14 (6,75), RND3 (80), THADA (81),TMEM163 (82), IGF2BP2 (83), PPARG 

(81), PSMD6 (84), MAEA (84,85), ANKRD55 (6), CDKAL1 (86), KCNK16 (84), ZFAND3 (84), DGKB (6), 

GCC1-PAX4 (84), JAZF1 (81), ANK1 (6,85), SLC30A8 (86), CDKN2A/2B (86), GLIS3 (84), TLE1 (6), HHEX 

(86), TCF7L2 (86), ZMIZ1 (6), KCNQ1 (6), CCND2 (6), HMGA2 (81), KLHDC5 (6), HMG20A (6,86), 

BCAR1 (6), LAMA1 (86), MC4R (6), CATAD2A/CILP2 (6,81), GIPR (6), PEPD (84), SUGP1/CILP2 (6,81), 

FITM2-R3HDML-HNF4A (84), FTO (86) 

2013 
COBLL1 (79), CDKAL1 (87), CDKN2A/B (87), KCNQ1 (87), CDC123/CAMK1D (87), GLIS3 (87), HNF1B 

(87), DUSP9 (87), GRK5 (87), RASGRP1 (87), SGCG (88), FAM58A (87) 

2014 
FAF1 (89), LPP (89), TMEM154 (89), ARL15 (89), HLA-B (90), POU5F1-TCF19 (89), SSR1-RREB1 (89), INS-

IGF2 (90), MPHOSPH9 (89) 

 

Table 2. Related genetic susceptibility associated with glycemic traits 
Locus Trait 

SNX7 Fasting proinsulin levels adjusted for fasting glucose (77) 

LYPLAL1 Fasting insulin (91) 

DPYSL5 Fasting glucose (91) 

GIPR 2hglucose/Insulinogenic index/AUCins/gluc/2-h insulin, adjusted for 2h glucose/T2D (69) 

IRS1 Fasting glucose/ HOMA-IR, Fasting insulin, CAD (68,91) 

SLC2A2 Fasting glucose/ HOMA B/HBA1C (68) 

TAF11 Fasting insulin (91) 

GRB10 FG, FI (83) 

LARP6 Fasting proinsulin levels (77) 

SGSM2 Fasting proinsulin levels (77) 

VPS13C 2h- glucose/ 2h- insulin, adjust for 2h-glocuse (69) 

PDX1-AS1 Fasting glucose (91) 

PCSK1 Fasting proinsulin levels/ fasting glucose (77,91) 

PDGFC Fasting insulin (91) 

MSMO1 Fasting insulin, insulin resistance (92) 

HECTD4/C12orf51 1-h plasma glucose (93) 

OR4S1 Fasting glucose (91) 

MADD Fasting glucose/ Fasting proinsulin/HOMA B (68,77) 

TCERG1L Fasting insulin, insulin resistance (92) 

PPP1R3B Fasting glucose (91) 

FOXA2/LINC00261 Fasting glucose (91) 
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association survey on the entire human 

genome is called Genome Wide Association 

study or GWAs founded by National Institutes 

of Health to cover hundreds to thousands of 

genotyping (35,36).By 2013, the catalog of 

published GWAs include near two thousand 

papers (37). 

GWAs, usually are held as case control 

study and assaying fewer than 100,000 

SNPs to more than one million, 

commonly by the Affymetrix 500k and 

Illumina HumanHap300 arrays. The 

accepted threshold for statistical 

significance in GWAs is <5*10
-8 

(38-40). 

A precise maps of usual single nucleotide 

polymorphisms (SNPs) all over the 

genome and also patterns of linkage 

disequilibrium, which accomplished by 

International Hap Map project and 

affordable High-throughput genotyping 

technologies and map of copy number 

variants are the primary requirements for 

GWA studies (41,42). 

GWA studies not only identify genetic 

associations with observable traits, but also 

demonstrate gene-gene interactions. It also 

could be carried out for quantitative traits, 

which explain underlying physiology of 

disease (43,44). 
 

Genetic risk factor of T2D: 
GWAs have both confirmed known genes and 

discovered many new susceptible genes for 

T2D since 2007 (45). The first GWAs for T2D 

was conducted in French population composed 

of 661 cases of T2D and 614 non-diabetic 

controls were genotyped on two genotyping 

platforms. In total, 392,935 SNPs were 

analyzed for association with T2D. This study 

revealed novel and reproducible association 

signals at SLC30A8 and HHEX and confirmed 

the famous association at TCF7L2. However, 

LOC387761, EXT2 associations were not 

reproducible in follow-up studies (46). Till 

now around 153 variants, more than 120 loci 

were identified to be associated with T2D or 

related traits and many new hints are waiting 

to be discovered. The summery of GWAs and 

meta-analysis related to T2D since 2007 are 

listed in Table 1. There are many other loci, 

reported to be associated with T2D 

complication that were listed in Table 2.  
 

Confirmatory of GWAs  
However, the loci identified in GWAs range 

from 10 to 100 kb, did not cover causal 

variants and genes. Further techniques, 

including re-sequencing of associated regions 

can be essential to entirely understand 

associations (94). In addition, data gathering 

from different GWAs should be confirmed in 

re-sequencing, genotyping and bioinformatics 

studies to elucidate that the results are 

reproducible in diverse population group and 

also the function of susceptible new candidate 

gene become clear (95-97).  
 

Pros and cons of GWAs 
Although several predominant limitations of 

using GWAs exist, GWAs methodologies are 

used for both monogenic and complex genetic 

disease. The benefits of GWAs are listed. 

•  No need to know the biological 

pathway of disease 

•  Documents specific genetic 

associations 

• It is likely to discover new candidate 

genes that is difficult to reach by other 

approaches  

• Provides strong data on sequence and 

copy-number variations 

However, there are some limitations in GWAs 

• Detects association related to disease 

not their causation 

• Identifies a specific location in genome 

not a specific gene. So it could be the coding 

sequence of protein or sequence between 

genes that yet dose not assumed to be related 

to disease. These variants are hard to check by 

biochemically experimental works (98). 

• Defines common variations in society 

(more that 5% frequency) not rare ones 

• Unable to release all interactions 

between SNPs and SNPs-environment. 
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• Requires large sample size to studied 

and the results need to be reproducible in other 

populations (98). 

 

Post-GWAs prioritization 
Many GWAs have been directed, with the 

consumption of high-through put and 

affordable genotyping and next generation 

sequencing platforms. Therefore, many DNA 

variants associated with complex traits have 

been discovered but these are just small 

proportion of heritability related to these 

diseases. Variants with frequencies less than 

5% and variants with small effect size that 

sharply influence the mechanisms of disease 

are undiscovered. So many chips are design to 

fine map certain genomic region. Also a 

number of whole exome sequencing created to 

find rare variant. To raise the power, meta-

analysis studies are designed. In this way so 

many other gaps are discovered (99,100). 
 

Comment and conclusion  
Since 2007, GWAs have critical role to uncover 

genetic risk factors associated toT2D. Around 120 

loci related to the disease are discovered. However, 

much of the risk factors still remain unexplained. 

This could be due to, not covering every variant in 

GWA studies. Rare variant may have relatively 

large effects on T2D which is missing in this kind 

of studies. And also some risk factors are due to 

epigenetic mechanisms that do not make any 

changes on genome sequences. Therefore, better 

understanding T2D not only needs applying many 

GWAs on different populations and doing meta-

analysis on them but also needs knowledge of 

heritability and studying rare variants in different 

populations. Identification of such rare variants, 

will require re-sequencing of the entire genome of 

type 2 diabetes cases and controls. However, the 

much more important part is to validate GWAs 

results by re-sequencing on different groups of 

same population and also diverse population. It 

seems that discovering mechanisms of complex 

diseases need a wide-range of further studies. 
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