Volume 13, Issue 4 (12-2021)                   IJDO 2021, 13(4): 224-233 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Askarbioki M, Mortazavi M, Amooee A, Kargar S, Afkhami-Ardekani M, Shirmardi S P et al . Non-Invasive Determination of Blood Glucose Levels by Optical Waveguide. IJDO 2021; 13 (4) :224-233
URL: http://ijdo.ssu.ac.ir/article-1-667-en.html
Department of General Surgery, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Abstract:   (1206 Views)
Objective: Today, there are various non-invasive techniques available for the determination of blood glucose levels. In this study, the level of blood glucose was determined by developing a new device using near-infrared (NIR) wavelength, glass optical waveguide, and the phenomenon of evanescent waves.
Materials and Methods: The body's interstitial fluid has made possible the development of new technology to measure the blood glucose. As a result of contacting the fingertip with the body of the borehole rod, where electromagnetic waves are reflected inside, evanescent waves penetrate from the borehole into the skin and are absorbed by the interstitial fluid. The electromagnetic wave rate absorption at the end of the borehole rod is investigated using a detection photodetector, and its relationship to the people's actual blood glucose level.
Following precise optimization and design of the glucose monitoring device, a statistical population of 100 participants with a maximum blood glucose concentration of 200 mg/dL was chosen. Before measurements, participants put their index finger for 30 seconds on the device.
Results: According to this experimental study, the values measured by the innovative device with Clark grid analysis were clinically acceptable in scales A and B. The Adjusted Coefficient of Determination of the data was estimated to be 0.9064.
Conclusion: For future investigations, researchers are recommended to work with a larger statistical population and use error reduction trends to improve the accuracy and expand the range of measurements.
Full-Text [PDF 716 kb]   (489 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/07/15 | Accepted: 2021/10/6 | Published: 2021/11/1

References
1. Delbeck S, Vahlsing T, Leonhardt S, Steiner G, Heise HM. Non-invasive monitoring of blood glucose using optical methods for skin spectroscopy-opportunities and recent advances. Analytical and bioanalytical chemistry. 2019;411(1):63-77. [DOI:10.1007/s00216-018-1395-x]
2. Pandey R, Paidi SK, Valdez TA, Zhang C, Spegazzini N, Dasari RR, et al. Noninvasive monitoring of blood glucose with Raman spectroscopy. Accounts of chemical research. 2017;50(2):264-72. [DOI:10.1021/acs.accounts.6b00472]
3. Klonoff DC. Noninvasive blood glucose monitoring. Diabetes care. 1997;20(3):433-7. [DOI:10.2337/diacare.20.3.433]
4. Abd Salam NA, bin Mohd Saad WH, Manap ZB, Salehuddin F. The evolution of non-invasive blood glucose monitoring system for personal application. Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 2016;8(1):59-65.
5. Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: recent developments. Sensors. 2017;17(8):1866. [DOI:10.3390/s17081866]
6. Lin T, Gal A, Mayzel Y, Horman K, Bahartan K. Non-invasive glucose monitoring: a review of challenges and recent advances. Curr. Trends Biomed. Eng. Biosci. 2017;6(5):1-8. [DOI:10.19080/CTBEB.2017.06.555696]
7. Villena Gonzales W, Mobashsher AT, Abbosh A. The progress of glucose monitoring-A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors. 2019;19(4):800. [DOI:10.3390/s19040800]
8. Nawaz A, Qhlckers P, Saelid S, Jacobsen M, Nadeem Akram M. Review: Non-invasive continuous blood glucose measurement techniques. J. Bioinforma. Diabetes. 2016;1(3):1-27. [DOI:10.14302/issn.2374-9431.jbd-15-647]
9. Chivukula P, Sangeetha MS, Brindha D, Nivethitha D. Review on Blood glucose measurement techniques. International Journal of Biomedical Engineering. 2018;3(1):7-11.
10. Kavitha G, Kumar KS. Nanosensors in Blood Glucose Measurement: A Review. Indian Journal of Public Health Research & Development. 2019;10(4). [DOI:10.5958/0976-5506.2019.00700.9]
11. Lipani L, Dupont BG, Doungmene F, Marken F, Tyrrell RM, Guy RH,et al. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nature nanotechnology. 2018;13(6):504-11. [DOI:10.1038/s41565-018-0112-4]
12. Kamat DK, Bagul D, Patil PM. Blood glucose measurement using bioimpedance technique. Advances in Electronics. 2014;2014. [DOI:10.1155/2014/406257]
13. Jun MH, Kim S, Ku B, Cho J, Kim K, Yoo HR, et al. Glucose-independent segmental phase angles from multi-frequency bioimpedance analysis to discriminate diabetes mellitus. Scientific reports. 2018;8(1):1-1. [DOI:10.1038/s41598-017-18913-7]
14. Lane SM, Mastrototaro JJ. Development of Chemically Amplified Optical Sensors for Continuous Blood Glucose Monitoring Final Report CRADA No. TSB-1162-95. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States); 2018. [DOI:10.2172/1418925]
15. Kim JH, Bae HU, Kwak HS, Lee TH, Cho SU, Jeong MY. Optical blood glucose sensor based on multimode interference (MMI) fabricated by thermal imprint process. Nanoscience and Nanotechnology Letters. 2017;9(8):1222-6. [DOI:10.1166/nnl.2017.2465]
16. Chen KC, Li YL, Wu CW, Chiang CC. Glucose sensor using U-shaped optical fiber probe with gold nanoparticles and glucose oxidase. Sensors. 2018;18(4):1217. [DOI:10.3390/s18041217]
17. Yang G, Yao XS, Su Y, Liu S, Feng T, Chen L,et al. Dermis-simulating phantom for noninvasive blood glucose sensing with OCT. InCLEO: QELS_Fundamental Science 2018 May 13 (pp. JTu2A-98). Optical Society of America. [DOI:10.1364/CLEO_AT.2018.JTu2A.98]
18. Elsherif M, Hassan MU, Yetisen AK, Butt H. Hydrogel optical fibers for continuous glucose monitoring. Biosensors and Bioelectronics. 2019;137:25-32. [DOI:10.1016/j.bios.2019.05.002]
19. Kalidoss R, Umapathy S. An overview on the exponential growth of non-invasive diagnosis of diabetes mellitus from exhaled breath by nanostructured metal oxide Chemi-resistive gas sensors and μ-preconcentrator. Biomedical microdevices. 2020;22(1):1-9. [DOI:10.1007/s10544-019-0448-z]
20. Kasahara R, Kino S, Soyama S, Matsuura Y. Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers. Biomedical optics express. 2018;9(1):289-302. [DOI:10.1364/BOE.9.000289]
21. Liu L, Feng L, Chen H, Wang Z. Non-invasive blood glucose prediction based on spectroscopy. Investigacion Clinica. 2019;60(4):775-88.
22. Kurasawa S, Koyama S, Ishizawa H, Fujimoto K, Chino S. Verification of non-invasive blood glucose measurement method based on pulse wave signal detected by FBG sensor system. Sensors. 2017;17(12):2702. [DOI:10.3390/s17122702]
23. Bauer A, Hertzberg O, Küderle A, Strobel D, Pleitez MA, Mäntele W. IR‐spectroscopy of skin in vivo: Optimal skin sites and properties for non‐invasive glucose measurement by photoacoustic and photothermal spectroscopy. Journal of biophotonics. 2018;11(1):e201600261. [DOI:10.1002/jbio.201600261]
24. Uwadaira Y, Ikehata A, Momose A, Miura M. Identification of informative bands in the short-wavelength NIR region for non-invasive blood glucose measurement. Biomedical optics express. 2016;7(7):2729-37. [DOI:10.1364/BOE.7.002729]
25. Lan YT, Kuang YP, Zhou LP, Wu GY, Gu PC, Wei HJ, et al. Noninvasive monitoring of blood glucose concentration in diabetic patients with optical coherence tomography. Laser Physics Letters. 2017;14(3):035603. [DOI:10.1088/1612-202X/aa58c0]
26. Alam MM, Saha S, Saha P, Nur FN, Moon NN, Karim A, et al. D-care: A non-invasive glucose measuring technique for monitoring diabetes patients. InProceedings of International Joint Conference on Computational Intelligence 2020 (pp. 443-453). Springer, Singapore. [DOI:10.1007/978-981-13-7564-4_38]
27. Tan CZ, Arndt J. Refractive index, optical dispersion, and group velocity of infrared waves in silica glass. Journal of Physics and Chemistry of Solids. 2001;62(6):1087-92. [DOI:10.1016/S0022-3697(00)00285-7]
28. Tan CZ. Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy. Journal of Non-Crystalline Solids. 1998;223(1-2):158-63. [DOI:10.1016/S0022-3093(97)00438-9]
29. Matsuoka J, Kitamura N, Fujinaga S, Kitaoka T, Yamashita H. Temperature dependence of refractive index of SiO2 glass. Journal of non-crystalline solids. 1991;135(1):86-9. [DOI:10.1016/0022-3093(91)90447-E]
30. Ghosh G, Endo M, Iwasaki T. Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses. Journal of Lightwave Technology. 1994;12(8):1338-42. [DOI:10.1109/50.317500]
31. Tan CZ, Arndt J, Xie HS. Optical properties of densified silica glasses. Physica B: Condensed Matter. 1998;252(1-2):28-33. [DOI:10.1016/S0921-4526(98)00051-9]
32. Malitson IH. Interspecimen comparison of the refractive index of fused silica. Josa. 1965;55(10):1205-9. [DOI:10.1364/JOSA.55.001205]
33. Askarbioki M, Zarandi MB, Khakshournia S, Shirmardi SP, Sharifian M. Electron beams scanning: A novel method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018;894:81-6. [DOI:10.1016/j.nima.2018.03.062]
34. Askarbioki M, Zarandi MB, Khakshournia S, Shirmardi SP, Sharifian M. Design and fabrication of 1D and 2D optical scanner for electron beams using color centre generation. Journal of Instrumentation. 2018;13(12):T12003. [DOI:10.1088/1748-0221/13/12/T12003]
35. Clarke WL. The original Clarke error grid analysis (EGA). Diabetes technology & therapeutics. 2005;7(5):776-9. [DOI:10.1089/dia.2005.7.776]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb