Volume 14, Issue 4 (volume 14, number 4 2022)                   IJDO 2022, 14(4): 210-218 | Back to browse issues page

XML Print

Master's Degree in Sport Physiology, Faculty of Sport Sciences, Shahrood University of Technology, Semnan, Iran.
Abstract:   (455 Views)
Objective: Oxidative stress plays a key role in the pathogenesis of type 2 diabetes mellitus (T2DM) and its complications. Exercise and anti-oxidant supplements are two potential approaches to delay the development of T2DM. The purpose of this study was to evaluate the interaction effects of spirulina supplementation and high intensity interval training (HIIT) on oxidative stress and total antioxidant capacity in inactive women with T2DM.
Materials and Methods: This research was a quasi-experimental study with pretest-posttest control group design. Our study subjects were 55 women with T2DM (age of 51.95 ± 5.57 years and BMI of 30.55 ± 4.63 kg/m2) that were randomly divided into 4 groups: 1- exercise and spirulina (n= 15), 2- spirulina (n= 15), 3- placebo (n= 15), 4-control (n= 10) without exercise and supplementation. Participants received 2 grams spirulina supplement per day. Training program included three sessions pre-week walking and running on a treadmill for 4 weeks, each session consisted of 10 minutes of warming and 10 minutes of cooling with a 50-70% HRR intensity and 25 minutes of HIIT (The training interval of 4-minute sections with 85-95 % HRR intensity and 3-minute active rest sections, with 50-70 % HRR intensity). All evaluations were performed with SPSS statistical software using analysis of covariance to assess between-group differences and t-test to assess within-group differences.
Results: Our study results showed that the plasma level of MDA decreased significantly in the exercise + placebo group compared to the control group (P= 0.03). However, the level of TAC was not changed significantly in our experimental groups compared to the control group (P= 0.7).
Conclusion: Based on the findings of this study the spirulina supplementation and HIIT can be good stimuli for reducing oxidative stress in women with T2DM.
Full-Text [PDF 249 kb]   (186 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/07/10 | Accepted: 2022/10/12 | Published: 2022/11/19

1. Støa EM, Meling S, Nyhus LK, Strømstad G, Mangerud KM, Helgerud J, et al. High-intensity aerobic interval training improves aerobic fitness and HbA1c among persons diagnosed with type 2 diabetes. European journal of applied physiology. 2017;117(3):455-67. [DOI:10.1007/s00421-017-3540-1]
2. Ganjifrockwala FA, Joseph JT, George G. Decreased total antioxidant levels and increased oxidative stress in South African type 2 diabetes mellitus patients. Journal of Endocrinology, Metabolism and Diabetes of South Africa. 2017;22(2):21-5. [DOI:10.1080/16089677.2017.1324590]
3. Szkudlinska MA, von Frankenberg AD, Utzschneider KM. The antioxidant N-Acetylcysteine does not improve glucose tolerance or β-cell function in type 2 diabetes. Journal of Diabetes and its Complications. 2016;30(4):618-22. [DOI:10.1016/j.jdiacomp.2016.02.003]
4. Doustar Y, Mohajeri D. Antioxidant effect of extract of the grape seed in streptozotocin induced diabetic rats. Zahedan Journal of Research in Medical Sciences. 2010;12(1).(in Persian)
5. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circulation research. 2010 Oct 29;107(9):1058-70. [DOI:10.1161/CIRCRESAHA.110.223545]
6. Savu O, Ionescu-Tirgoviste C, Atanasiu V, Gaman L, Papacocea R, Stoian I. Increase in total antioxidant capacity of plasma despite high levels of oxidative stress in uncomplicated type 2 diabetes mellitus. Journal of international medical research. 2012;40(2):709-16. [DOI:10.1177/147323001204000235]
7. Teixeira de Lemos E, Oliveira J, Páscoa Pinheiro J, Reis F. Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus. Oxidative medicine and cellular longevity. 2012;2012. [DOI:10.1155/2012/741545]
8. Little JP, Jung ME, Wright AE, Wright W, Manders RJ. Effects of high-intensity interval exercise versus continuous moderate-intensity exercise on postprandial glycemic control assessed by continuous glucose monitoring in obese adults. Applied physiology, nutrition, and metabolism. 2014;39(7):835-41. [DOI:10.1139/apnm-2013-0512]
9. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants & redox signaling. 2013;18(10):1208-46. [DOI:10.1089/ars.2011.4498]
10. Sakinepoor A, Naderi A, Mazidi M, Hashemian AH, Mirzaei M, Letafatkar A. Effect of Resistance and Aquatic Exercises on Balance in Diabetes Peripheral Neuropathy Patients: A Randomized Clinical Trial Study. Journal of Diabetes Nursing. 2019;7(4):968-82.(in Persian)
11. Parker L, McGuckin TA, Leicht AS. Influence of exercise intensity on systemic oxidative stress and antioxidant capacity. Clinical physiology and functional imaging. 2014;34(5):377-83. [DOI:10.1111/cpf.12108]
12. Zwetsloot KA, Nieman DC, Knab A, John CS, Lomiwes DD, Hurst RD, et al. Effect of 4 weeks of high‐intensity interval training on exercise performance and markers of inflammation and oxidative stress. The FASEB journal. 2017;31:839-1.
13. Ismail M, Hossain M, Tanu AR, Shekhar HU. Effect of spirulina intervention on oxidative stress, antioxidant status, and lipid profile in chronic obstructive pulmonary disease patients. BioMed research international. 2015;2015. [DOI:10.1155/2015/486120]
14. Gargouri M, Magné C, El Feki A. Hyperglycemia, oxidative stress, liver damage and dysfunction in alloxan-induced diabetic rat are prevented by Spirulina supplementation. Nutrition research. 2016;36(11):1255-68. [DOI:10.1016/j.nutres.2016.09.011]
15. Gupta A, Nair A, Kumria R, Al-Dhubiab BE, Chattopadhyaya I, Gupta S. Assessment of pharmacokinetic interaction of spirulina with glitazone in a type 2 diabetes rat model. Journal of medicinal food. 2013;16(12):1095-100. [DOI:10.1089/jmf.2012.2716]
16. McCarthy-Johnson MA. Effects of Spirulina on Inflammation and Fatigue (Doctoral dissertation, The Ohio State University); 201 ;40(2):601-17.
17. Hernández-Lepe MA, López-Díaz JA, de la Rosa LA, Hernández-Torres RP, Wall-Medrano A, Juarez-Oropeza MA, et al. Double-blind randomised controlled trial of the independent and synergistic effect of Spirulina maxima with exercise (ISESE) on general fitness, lipid profile and redox status in overweight and obese subjects: Study protocol. BMJ open. 2017;7(6):e013744. [DOI:10.1136/bmjopen-2016-013744]
18. Kim C, Choi HE, Lim MH. Effect of high interval training in acute myocardial infarction patients with drug-eluting stent. American journal of physical medicine & rehabilitation. 2015;94(10S):879-86. [DOI:10.1097/PHM.0000000000000290]
19. Spanidis Y, Mpesios A, Stagos D, Goutzourelas N, Bar Or D, Karapetsa M, et al. Assessment of the redox status in patients with metabolic syndrome and type 2 diabetes reveals great variations. Experimental and therapeutic medicine. 2016;11(3):895-903. [DOI:10.3892/etm.2016.2968]
20. Bajaj S, Khan A. Antioxidants and diabetes. Indian journal of endocrinology and metabolism. 2012;16(Suppl 2):S267. [DOI:10.4103/2230-8210.104057]
21. Edziri H, Mastouri M, Aouni M, Verschaeve L. Polyphenols content, antioxidant and antiviral activities of leaf extracts of Marrubium deserti growing in Tunisia. South African Journal of Botany. 2012;80:104-9. [DOI:10.1016/j.sajb.2012.03.001]
22. Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K. The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Archives of toxicology. 2016;90(8):1817-40. [DOI:10.1007/s00204-016-1744-5]
23. Sagara T, Nishibori N, Kishibuchi R, Itoh M, Morita K. Non-protein components of Arthrospira (Spirulina) platensis protect PC12 cells against iron-evoked neurotoxic injury. Journal of Applied Phycology. 2015;27(2):849-55. [DOI:10.1007/s10811-014-0388-1]
24. Kim MY, Cheong SH, Lee JH, Kim MJ, Sok DE, Kim MR. Spirulina improves antioxidant status by reducing oxidative stress in rabbits fed a high-cholesterol diet. Journal of Medicinal Food. 2010;13(2):420-6. [DOI:10.1089/jmf.2009.1215]
25. Lee EH, Park JE, Choi YJ, Huh KB, Kim WY. A randomized study to establish the effects of spirulina in type 2 diabetes mellitus patients. Nutrition Research and Practice. 2008;2(4):295-300. https://doi.org/10.4162/nrp.2008.2.4.295 [DOI:10.4162/nrp.2019.13.4.295]
26. Shyam R, Singh SN, Vats P, Singh VK, Bajaj R, Singh SB, et al. Wheat grass supplementation decreases oxidative stress in healthy subjects: a comparative study with spirulina. The Journal of Alternative and Complementary Medicine. 2007;13(8):789-92. [DOI:10.1089/acm.2007.7137]
27. Gordon LA, Morrison EY, McGrowder DA, Young R, Fraser YT, Zamora EM, et al. Effect of exercise therapy on lipid profile and oxidative stress indicators in patients with type 2 diabetes. BMC complementary and alternative medicine. 2008;8(1):1-0. [DOI:10.1186/1472-6882-8-21]
28. Asano RY, Sales MM, Browne RA, Moraes JF, Júnior HJ, Moraes MR, et al. Acute effects of physical exercise in type 2 diabetes: a review. World journal of diabetes. 2014;5(5):659. [DOI:10.4239/wjd.v5.i5.659]
29. Kalpana K, Kusuma DL, Lal PR, Khanna GL. Effect of Spirulina on Antioxidant Status and Exercise-Induced Oxidative Stress of Indian Athletes in Comparison to a Commercial Antioxidant. Asian Journal of Exercise & Sports Science. 2012;9(2).27-4. [DOI:10.29011/2575-7091.100039]
30. Abdel DM, Halawa S. Synergistic hepatocardioprotective and antioxidant effects of myrrh and ascorbic acid against diazinon-induced toxicity in rabbits. 2014.
31. Gauze-Gnagne C, Lohoues E, Monde A, Djinhi J, Camara C, Sess E. Evaluation of the Anti-oxidant Effet of Spirulina on Marathon Runners in Cote D'ivoire. J. Nutr. Food. Sci. 2015;5:392:2. [DOI:10.4172/2155-9600.1000392]
32. Kalafati M, Jamurtas AZ, Nikolaidis MG, Paschalis V, Theodorou AA, Sakellariou GK, Koutedakis Y, Kouretas D. Ergogenic and antioxidant effects of spirulina supplementation in humans. Medicine and Science Sports Exercise. 2010;42(1):142-51. [DOI:10.1249/MSS.0b013e3181ac7a45]
33. Park SY, Kwak YS, Park SY, Kwak YS. Impact of aerobic and anaerobic exercise training on oxidative stress and antioxidant defense in athletes. Journal of exercise rehabilitation. 2016;12(2):113-7. [DOI:10.12965/jer.1632598.299]
34. Khoramshahi S. Effect of five weeks of high-intensity interval training on the expression of miR-23a and Atrogin-1 in gastrocnemius muscles of diabetic male rats. Iranian Journal of Endocrinology and Metabolism. 2017;18(5):361-7.(in Persian)
35. Fisher G, Schwartz DD, Quindry J, Barberio MD, Foster EB, Jones KW, et al. Lymphocyte enzymatic antioxidant responses to oxidative stress following high-intensity interval exercise. Journal of Applied Physiology. 2011;110(3):730-7. [DOI:10.1152/japplphysiol.00575.2010]
36. Cipryan L. IL-6, antioxidant capacity and muscle damage markers following high-intensity interval training protocols. Journal of human kinetics. 2017;56(1):139-48. [DOI:10.1515/hukin-2017-0031]
37. Wuorinen EC, Page R, Wuorinen SH. Acute and chronic varied exercise intensity effects on total antioxidant capacity and protein carbonylation. The FASEB Journal. 2017;31:839-26.
38. Ismail GO. Comparison of total antioxidant capacity oxidative stress and blood lipoprotein parameters in volleyball players and sedentary. Educational Research and Reviews. 2013 ;8(12):844-8.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.