Volume 15, Issue 4 (12-2023)                   IJDO 2023, 15(4): 228-242 | Back to browse issues page


XML Print


Al-Hadi University College, Baghdad, Iraq. Science Faculty, Menoufia University, Menoufia, Egypt. MLS Ministry of Health, Alexandria, Egypt.
Abstract:   (309 Views)
Diabetes mellitus is a chronic metabolic disease characterized by hyperglycemia resulting from inadequate insulin signaling. Current management relies on biomarkers such as hemoglobin A1c (HbA1c) to guide therapy, but emerging tools offer opportunities to transform care through more personalized approaches. Molecular biomarkers, including microRNAs, metabolites, and proteins, may enable better prediction of disease course and risk of complications in individuals. Genomic medicine leverages knowledge of genetic architecture to guide tailored prevention and treatment based on an individual’s genomic profile. Stem cell research differentiates functional insulin-secreting cells for transplantation into patients as an alternative to exogenous insulin. Gene silencing techniques such as RNA interference can restore defective insulin production and secretion pathways by inhibiting dysregulated gene expression. Artificial intelligence applications automate glucose monitoring, insulin delivery, diagnostic screening for complications, and digital health coaching. Despite barriers to translation, these technologies have disruptive potential for predictive, preventive, precise, and participatory care paradigms in diabetes management. Continued research on molecular biomarkers, pharmacogenomics, stem cell therapies, gene editing, and artificial intelligence (AI) aims to improve patient outcomes through more personalized approaches tailored to the specific biological vulnerabilities underlying each individual’s diabetes.
 
Full-Text [PDF 602 kb]   (179 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/07/8 | Accepted: 2023/10/10 | Published: 2023/12/19

References
1. Buschard K. The etiology and pathogenesis of type 1 diabetes-A personal, non-systematic review of possible causes, and interventions. Frontiers in Endocrinology. 2022;13:876470.
2. Ke C, Narayan KV, Chan JC, Jha P, Shah BR. Pathophysiology, phenotypes and management of type 2 diabetes mellitus in Indian and Chinese populations. Nature Reviews Endocrinology. 2022;18(7):413-32.
3. Wang J, Zhang L, Bai Y, Wang X, Wang W, Li J, et al. The influence of shorter red blood cell lifespan on the rate of HbA1c target achieved in type 2 diabetes patients with a HbA1c detection value lower than 7%. Journal of Diabetes. 2023;15(1):7-14.
4. Wang Y, Xu W, Mak IL, Chin WY, Yu EY, Lam CL, et al. Trends of clinical parameters and incidences of diabetes mellitus complications among patients with type 2 diabetes mellitus in Hong Kong, 2010-2019: a retrospective cohort study. Eclinicalmedicine. 2023;60:101999.
5. Overgaard KS, Andersen TR, Mohamed RA, Heinsen LJ, Binderup HG, Möller S, et al. Can prediabetes diagnosed using HemoglobinA1c or oral glucose tolerance test predict presence and severity of coronary artery disease in symptomatic patients?. Diabetes & Vascular Disease Research. 2023;20(3):14791641231179870.
6. Cetin EG, Demir N, Kalkan K, Ozturkmen YA, Nazif P, Yucelen SY, et al. The Compatibility of Hemoglobin A1c with Oral Glucose Tolerance Test and Fasting Plasma Glucose. Şişli Etfal Hastanesi Tip Bülteni. 2020;54(3):351-6.
7. Sufianov A, Kostin A, Begliarzade S, Kudriashov V, Ilyasova T, Liang Y, et al. Exosomal non coding RNAs as a novel target for diabetes mellitus and its complications. Non-coding RNA Research. 2023,8(2),192-204.
8. Karami M, Mousavi SH, Rafiee M, Heidari R, Shahrokhi SZ. Biochemical and molecular biomarkers: unraveling their role in gestational diabetes mellitus. Diabetology & Metabolic Syndrome. 2023;15(1):1-1.
9. Lupu L, Taha L, Farkash R, Bayya F, Karmi M, Steinmetz Y, et al. Hemoglobin A1C as a prognostic factor and the pre-diabetic paradox in patients admitted to a tertiary care medical center intensive cardiac care unit: The Jerusalem platelets thrombosis and intervention in cardiology (JUPITER-6) study group. Cardiovascular Diabetology. 2022;21(1):86.
10. Jamieson EL, Dimeski G, Flatman R, Hickman PE, Jones GR, Marley JV, et al. Oral glucose tolerance test to diagnose gestational diabetes mellitus: impact of variations in specimen handling. Clinical Biochemistry. 2023;115:33-48.
11. Maddaloni E, Bolli GB, Frier BM, Little RR, Leslie RD, Pozzilli P, et al. C‐peptide determination in the diagnosis of type of diabetes and its management: A clinical perspective. Diabetes, Obesity and Metabolism. 2022;24(10):1912-26.
12. Asadollahi S, Hadizadeh M, Namiranian N, Kalantar SM, Firoozabadi AD, Injinari N. Misexpression of LINC01410, FOSL1, and MAFB in peripheral blood mononuclear cells associated with diabetic nephropathy. Gene. 2023;862:147265.
13. Taylor HJ, Hung YH, Narisu N, Erdos MR, Kanke M, Yan T, et al. Human pancreatic islet microRNAs implicated in diabetes and related traits by large-scale genetic analysis. Proceedings of the National Academy of Sciences. 2023;120(7):e2206797120.
14. Keller DM, Perez IG. Dual regulation of miR-375 and CREM genes in pancreatic beta cells. Islets. 2022;14(1):139-48.
15. Li LJ, Wang X, Chong YS, Chan JK, Tan KH, Eriksson JG, et al. Exploring preconception signatures of metabolites in mothers with gestational diabetes mellitus using a non-targeted approach. BMC medicine. 2023;21(1):99.
16. Bashir H, Majid S, Khan MS, Bhat MH, Hamid R, Ashraf R, et al. Inter-relationship of Pro-and Anti-inflammatory Biomarkers with the development of Type 2 Diabetes Mellitus. Heliyon. 2022;8(11), e11329.
17. Denimal D, Monier S, Bouillet B, Vergès B, Duvillard L. High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites. 2023;13(2):253.
18. Lu W, Hu C. Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes. Chinese Medical Journal. 2022;135(16):1940-51.
19. Khan RS, Malik H. Diagnostic Biomarkers for Gestational Diabetes Mellitus Using Spectroscopy Techniques: A Systematic Review. Diseases. 2023;11(1):16.
20. Rodrigues Oliveira SM, Rebocho A, Ahmadpour E, Nissapatorn V, de Lourdes Pereira M. Type 1 diabetes mellitus: A review on advances and challenges in creating insulin producing devices. Micromachines. 2023;14(1):151.
21. Xu X, Wang X, Jiang H. Current Status and Prospect of Diabetes Diagnosis and Treatment Based on Biosensing Technology. Chemosensors. 2023;11(7):391.
22. Laakso M, Fernandes Silva L. Genetics of type 2 diabetes: past, present, and future. Nutrients. 2022;14(15):3201.
23. Srinivasan S, Todd J. The genetics of type 2 diabetes in youth: Where we are and the road ahead. The Journal of pediatrics. 2022;247:17-21.
24. Vollenbrock CE, Roshandel D, van der Klauw MM, Wolffenbuttel BH, Paterson AD. Genome-wide association study identifies novel loci associated with skin autofluorescence in individuals without diabetes. BMC genomics. 2022;23(1):1-8.
25. Hettiarachchi G, Komar AA. GWAS to Identify SNPs Associated with Common Diseases and Individual Risk: Genome Wide Association Studies (GWAS) to Identify SNPs Associated with Common Diseases and Individual Risk. InSingle Nucleotide Polymorphisms: Human Variation and a Coming Revolution in Biology and Medicine 2022(pp. 51-76). Cham: Springer International Publishing.
26. Shastry BS. SNPs in disease gene mapping, medicinal drug development and evolution. Journal of human genetics. 2007;52(11):871-80.
27. Azarova I, Polonikov A, Klyosova E. Molecular genetics of abnormal redox homeostasis in type 2 diabetes mellitus. International Journal of Molecular Sciences. 2023;24(5):4738.
28. Francis Y, Tiercelin C, Alexandre-Heyman L, Larger E, Dubois-Laforgue D. HNF1B-MODY masquerading as type 1 diabetes: A pitfall in the etiological diagnosis of diabetes. Journal of the Endocrine Society. 2022;6(8):bvac087.
29. Amaral S, Palha A, Bogalho P, Silva-Nunes J. Maturity-onset diabetes of the young secondary to HNF1B variants (HNF1B-MODY): a series of 10 patients from a single diabetes center. Diabetology & Metabolic Syndrome. 2023;15(1):21.
30. Shitomi-Jones LM, Akam L, Hunter D, Singh P, Mastana S. Genetic risk scores for the determination of type 2 diabetes mellitus (T2DM) in North India. International Journal of Environmental Research and Public Health. 2023;20(4):3729.
31. Jan A, Saeed M, Mothana RA, Muhammad T, Rahman N, Alanzi AR, et al. Association of CYP2C9* 2 Allele with Sulphonylurea-Induced Hypoglycaemia in Type 2 Diabetes Mellitus Patients: A Pharmacogenetic Study in Pakistani Pashtun Population. Biomedicines. 2023;11(8):228.
32. Osto E, Bonacina F, Pirillo A, Norata GD. Neutral effect of SGLT2 inhibitors on lipoprotein metabolism: From clinical evidence to molecular mechanisms. Pharmacological Research. 2023;188:106667.
33. Cervantes J, Kanter JE. Monocyte and macrophage foam cells in diabetes-accelerated atherosclerosis. Frontiers in Cardiovascular Medicine. 2023;10:1213177.
34. Florez JC, Pearson ER. A roadmap to achieve pharmacological precision medicine in diabetes. Diabetologia. 2022;65(11):1830-8.
35. Michalek DA, Onengut-Gumuscu S, Repaske DR, Rich SS. Precision Medicine in Type 1 Diabetes. Journal of the Indian Institute of Science. 2023;103:335-51.
36. Silva IB, Kimura CH, Colantoni VP, Sogayar MC. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges. Stem cell research & therapy. 2022;13(1):309. [DOI:10.1186/s13287-022-02977-y]
37. Hsieh MC, Wang WT, Lin CY, Kuo YR, Lee SS, Hou MF, et al. Stem cell-based therapeutic strategies in diabetic wound healing. Biomedicines. 2022;10(9):2085.
38. Du S, Li Y, Geng Z, Zhang Q, Buhler LH, Gonelle-Gispert C, et al. Engineering Islets From Stem Cells: The Optimal Solution for the Treatment of Diabetes?. Frontiers in Immunology. 2022;13:869514.
39. Jin W, Jiang W. Stepwise differentiation of functional pancreatic β cells from human pluripotent stem cells. Cell Regeneration. 2022 ;11(1):24. [DOI:10.1186/s13619-022-00134-7]
40. Rahmadanthi FR, Maksum IP. Transfer RNA Mutation Associated with Type 2 Diabetes Mellitus. Biology. 2023;12(6):871.
41. Urizar AI, Prause M, Ingerslev LR, Wortham M, Sui Y, Sander M, et al. Beta cell dysfunction induced by bone morphogenetic protein (BMP)-2 is associated with histone modifications and decreased NeuroD1 chromatin binding. Cell death & disease. 2023;14(7):399.
42. Sun H, Sun R, Hua Y, Lu Q, Shao X. An update on the role of thioredoxin-interacting protein in diabetic kidney disease: A mini review. Frontiers in Medicine. 2023;10:1153805.
43. Zahid M, Dowlatshahi S, Kansara AH, Sadhu AR. The Evolution of Diabetes Technology-Options Towards Personalized Care. Endocrine Practice. 2023;29(8):653-62.
44. Natesan V, Kim SJ. The Trend of Organic Based Nanoparticles in the Treatment of Diabetes and Its Perspectives. Biomolecules & Therapeutics. 2023;31(1):16.
45. Karmakar S, Bhowmik M, Laha B, Manna S. Recent advancements on novel approaches of insulin delivery. Medicine in Novel Technology and Devices. 2023;19:100253.
46. Elian V, Popovici V, Ozon EA, Musuc AM, Fița AC, Rusu E, et al. Current Technologies for Managing Type 1 Diabetes Mellitus and Their Impact on Quality of Life-A Narrative Review. Life. 2023;13(8):1663.
47. Zafar A, Lewis DM, Shahid A. Long-Term Glucose Forecasting for Open-Source Automated Insulin Delivery Systems: A Machine Learning Study with Real-World Variability Analysis.Healthcare 2023, 11 (6):779.
48. Lim JI, Regillo CD, Sadda SR, Ipp E, Bhaskaranand M, Ramachandra C, et al. Artificial intelligence detection of diabetic retinopathy: subgroup comparison of the EyeArt system with ophthalmologists' dilated examinations. Ophthalmology Science. 2023;3(1):100228.
49. Chaki J, Ganesh ST, Cidham SK, Theertan SA. Machine learning and artificial intelligence based Diabetes Mellitus detection and self-management: A systematic review. Journal of King Saud University-Computer and Information Sciences. 2022;34(6):3204-25.
50. Sharma S, Pajai S, Prasad R, Wanjari MB, Munjewar PK, Sharma R, et al. A Critical Review of ChatGPT as a Potential Substitute for Diabetes Educators. Cureus. 2023;15(5):e38380.
51. Aggarwal A, Tam CC, Wu D, Li X, Qiao S. Artificial Intelligence-Based Chatbots for Promoting Health Behavioral Changes: Systematic Review. Journal of Medical Internet Research. 2023;25:e40789.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.