Volume 16, Issue 3 (8-2024)                   IJDO 2024, 16(3): 191-201 | Back to browse issues page

XML Print


Departments of Biochemistry G.B Pant Institute of Postgraduate Medical Education and Research, Associated Maulana Azad Medical College, GNCTD, New Delhi, India.
Abstract:   (181 Views)
Cardiovascular disease (CVD) and diabetes mellitus (DM) are the pressing global health issue, with advanced glycation end products (AGEs) playing a crucial role in its development. AGEs are harmful compounds formed through chronic exposure to elevated blood glucose levels and oxidative stress, both of which are prevalent in diabetes mellitus. These molecules have detrimental effects on vascular function, inflammation, and oxidative stress, exacerbating CVD progression. Conventional strategies for managing AGEs are often limited by side effects and insufficient efficacy, driving the need for alternative approaches. This review investigates the intricate relationship between AGEs, diabetes mellitus, and CVD, with a focus on the therapeutic potential of natural products-particularly phenolic compounds. The review explores how AGEs contribute to the pathogenesis of diabetes-related complications and their impact on cardiovascular health. It examines the molecular mechanisms underlying AGE formation and the inhibitory effects of various natural compounds on this process. Additionally, the review assesses preclinical and clinical evidence supporting the efficacy of these natural agents in mitigating AGE-induced damage. By highlighting the significant role of AGEs in diabetes and CVD, the study underscores the potential of natural products to counteract AGE accumulation. It provides an in-depth analysis of AGE biochemistry, their sources, and the effects of different natural products on AGE formation. The review concludes by emphasizing the promise of natural compounds in reducing oxidative stress and inflammation, and thereby lowering the risk of cardiovascular complications associated with diabetes. This comprehensive overview advocates for the integration of natural products into therapeutic strategies for managing AGE-mediated cardiovascular and diabetic conditions.
 
Full-Text [PDF 756 kb]   (86 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/04/12 | Accepted: 2024/06/15 | Published: 2024/08/20

References
1. Knorr D, Watzke H. Food processing at a crossroad. Frontiers in Nutrition. 2019;6:85. [DOI:10.3389/fnut.2019.00085]
2. Gill V, Kumar V, Singh K, Kumar A, Kim JJ. Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules. 2019 Dec 17;9(12):888. [DOI:10.3390/biom9120888]
3. Zhang Q, Ames JM, Smith RD, Baynes JW, Metz TO. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. Journal of proteome research. 2009;8(2):754-69. [DOI:10.1021/pr800858h]
4. Lund MN, Ray CA. Control of Maillard reactions in foods: Strategies and chemical mechanisms. Journal of agricultural and food chemistry. 2017;65(23):4537-52. [DOI:10.1021/acs.jafc.7b00882]
5. Sharma C, Kaur A, Thind SS, Singh B, Raina S. Advanced glycation End-products (AGEs): an emerging concern for processed food industries. Journal of food science and technology. 2015;52:7561-76. [DOI:10.1007/s13197-015-1851-y]
6. van Waateringe RP, Mook-Kanamori MJ, Slagter SN, van der Klauw MM, van Vliet-Ostaptchouk JV, Graaff R, et al. The association between various smoking behaviors, cotinine biomarkers and skin autofluorescence, a marker for advanced glycation end product accumulation. PLoS One. 2017;12(6):e0179330. [DOI:10.1371/journal.pone.0179330]
7. Uribarri J, Woodruff S, Goodman S, Cai W, Chen XU, Pyzik R, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association. 2010;110(6):911-6. [DOI:10.1016/j.jada.2010.03.018]
8. Ottum MS, Mistry AM. Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance. Journal of clinical biochemistry and nutrition. 2015;57(1):1-2. [DOI:10.3164/jcbn.15-3]
9. Wanner MJ, Zuidinga E, Tromp DS, Vilím J, Jørgensen SI, van Maarseveen JH. Synthetic evidence of the Amadori-type alkylation of biogenic amines by the neurotoxic metabolite dopegal. The Journal of organic chemistry. 2019;85(2):1202-7. [DOI:10.1021/acs.joc.9b01948]
10. Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194-222. [DOI:10.3390/biom5010194]
11. Gkogkolou P, Böhm M. Advanced glycation end products: key players in skin aging?. Dermato-endocrinology. 2012;4(3):259-70. [DOI:10.4161/derm.22028]
12. Allaman I, Bélanger M, Magistretti PJ. Methylglyoxal, the dark side of glycolysis. Frontiers in neuroscience. 2015;9:23. [DOI:10.3389/fnins.2015.00023]
13. Peters AL, Davidson MB, Schriger DL, Hasselblad V. A clinical approach for the diagnosis of diabetes mellitus: an analysis using glycosylated hemoglobin levels. Jama. 1996;276(15):1246-52. [DOI:10.1001/jama.1996.03540150048030]
14. Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S, et al. Tobacco smoke is a source of toxic reactive glycation products. Proceedings of the National Academy of Sciences. 1997;94(25):13915-20. [DOI:10.1073/pnas.94.25.13915]
15. Poljsak B, Kovač V, Milisav I. Antioxidants, food processing and health. Antioxidants. 2021;10(3):433. [DOI:10.3390/antiox10030433]
16. Uribarri J, Cai W, Peppa M, Goodman S, Ferrucci L, Striker G, et al. Circulating glycotoxins and dietary advanced glycation endproducts: two links to inflammatory response, oxidative stress, and aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2007;62(4):427-33. [DOI:10.1093/gerona/62.4.427]
17. Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. [DOI:10.3390/cells11081312]
18. Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells. 2022;11(8):1312. [DOI:10.3390/cells11081312]
19. Luo Y, Li S, Ho CT. Key aspects of Amadori rearrangement products as future food additives. Molecules. 2021 ;26(14):4314. [DOI:10.3390/molecules26144314]
20. Chen CY, Zhang JQ, Li L, Guo MM, He YF, Dong YM, et al. Advanced glycation end products in the skin: Molecular mechanisms, methods of measurement, and inhibitory pathways. Frontiers in Medicine. 2022;9:837222. [DOI:10.3389/fmed.2022.837222]
21. Delatour T, Hegele J, Parisod V, Richoz J, Maurer S, Steven M, et al. Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The particular case of carboxymethyllysine. Journal of Chromatography A. 2009;1216(12):2371-81. [DOI:10.1016/j.chroma.2009.01.011]
22. Hull GL, Woodside JV, Ames JM, Cuskelly GJ. Nε-(carboxymethyl) lysine content of foods commonly consumed in a Western style diet. Food Chemistry. 2012;131(1):170-4. [DOI:10.1016/j.foodchem.2011.08.055]
23. Assar SH, Moloney C, Lima M, Magee R, Ames JM. Determination of N ɛ-(carboxymethyl) lysine in food systems by ultra performance liquid chromatography-mass spectrometry. Amino acids. 2009;36:317-26. [DOI:10.1007/s00726-008-0071-4]
24. Gómez-Ojeda A, Jaramillo-Ortíz S, Wrobel K, Wrobel K, Barbosa-Sabanero G, Luevano-Contreras C, et al. Comparative evaluation of three different ELISA assays and HPLC-ESI-ITMS/MS for the analysis of Nε-carboxymethyl lysine in food samples. Food Chemistry. 2018;243:11-8. [DOI:10.1016/j.foodchem.2017.09.098]
25. Scheijen JL, Clevers E, Engelen L, Dagnelie PC, Brouns F, Stehouwer CD, et al. Analysis of advanced glycation endproducts in selected food items by ultra-performance liquid chromatography tandem mass spectrometry: Presentation of a dietary AGE database. Food chemistry. 2016;190:1145-50. [DOI:10.1016/j.foodchem.2015.06.049]
26. Nomi Y, Annaka H, Sato S, Ueta E, Ohkura T, Yamamoto K, et al. Simultaneous quantitation of advanced glycation end products in soy sauce and beer by liquid chromatography-tandem mass spectrometry without ion-pair reagents and derivatization. Journal of agricultural and food chemistry. 2016;64(44):8397-405. [DOI:10.1021/acs.jafc.6b02500]
27. Jack M, Wright D. Role of advanced glycation endproducts and glyoxalase I in diabetic peripheral sensory neuropathy. Translational Research. 2012;159(5):355-65. [DOI:10.1016/j.trsl.2011.12.004]
28. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circulation research. 2010;107(9):1058-70. [DOI:10.1161/CIRCRESAHA.110.223545]
29. Halper J. Basic components of connective tissues and extracellular matrix: fibronectin, fibrinogen, laminin, elastin, fibrillins, fibulins, matrilins, tenascins and thrombospondins. Progress in heritable soft connective tissue diseases. 2021;802:105-26. [DOI:10.1007/978-3-030-80614-9_4]
30. Tan BL, Norhaizan ME, Liew WP, Sulaiman Rahman H. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Frontiers in pharmacology. 2018;9:1162. [DOI:10.3389/fphar.2018.01162]
31. Sell DR, Lane MA, Johnson WA, Masoro EJ, Mock OB, Reiser KM, et al. Longevity and the genetic determination of collagen glycoxidation kinetics in mammalian senescence. Proceedings of the National Academy of Sciences. 1996;93(1):485-90. [DOI:10.1073/pnas.93.1.485]
32. Sell Dr, Kleinman Nr, Monnier Vm. Longitudinal determination of skin collagen glycation and glycoxidation rates predicts early death in C57BL/6NNIA mice. The FASEB Journal. 2000;14(1):145-56. [DOI:10.1096/fasebj.14.1.145]
33. Semba RD, Bandinelli S, Sun K, Guralnik JM, Ferrucci L. Plasma carboxymethyl‐lysine, an advanced glycation end product, and all‐cause and cardiovascular disease mortality in older community‐dwelling adults. Journal of the American Geriatrics Society. 2009;57(10):1874-80. [DOI:10.1111/j.1532-5415.2009.02438.x]
34. Cannizzaro L, Rossoni G, Savi F, Altomare A, Marinello C, Saethang T, et al. Regulatory landscape of AGE-RAGE-oxidative stress axis and its modulation by PPARγ activation in high fructose diet-induced metabolic syndrome. Nutrition & metabolism. 2017 ;14:1-3. [DOI:10.1186/s12986-016-0149-z]
35. Levi B, Werman MJ. Biochemical and Molecular Roles of Nutrients-Long-Term Fructose Consumption Accelerates Glycation and Several Age-Related Variables in Male Rats. Journal of Nutrition.1998;128(9):1442-9. [DOI:10.1093/jn/128.9.1442]
36. Stanhope KL, Schwarz JM, Keim NL, Griffen SC, Bremer AA, Graham JL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. The Journal of clinical investigation.2009;119(5):1322-34. [DOI:10.1172/JCI37385]
37. Crescenzo R, Bianco F, Falcone I, Coppola P, Liverini G, Iossa S. Increased hepatic de novo lipogenesis and mitochondrial efficiency in a model of obesity induced by diets rich in fructose. European journal of nutrition.2013;52(2):537-45. [DOI:10.1007/s00394-012-0356-y]
38. Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Annals of the New York Academy of Sciences. 2011;1243(1):88-102. [DOI:10.1111/j.1749-6632.2011.06320.x]
39. Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303-36. [DOI:10.3390/metabo2020303]
40. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity. 2009;2(5):270-8. [DOI:10.4161/oxim.2.5.9498]
41. Masyita A, Sari RM, Astuti AD, Yasir B, Rumata NR, Emran TB, et al. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food chemistry: X. 2022;13:100217. [DOI:10.1016/j.fochx.2022.100217]
42. Heinrich M, Mah J, Amirkia V. Alkaloids used as medicines: Structural phytochemistry meets biodiversity-An update and forward look. Molecules. 2021;26(7):1836. [DOI:10.3390/molecules26071836]
43. Calderon Guzman D, Juárez Olguín H, Veloz Corona Q, Ortiz Herrera M, Osnaya Brizuela N, Barragán Mejía G. Consumption of cooked common beans or saponins could reduce the risk of diabetic complications. Diabetes, Metabolic Syndrome and Obesity. 2020:3481-6. [DOI:10.2147/DMSO.S270564]
44. Hwang SH, Kim HY, Zuo G, Wang Z, Lee JY, Lim SS. Anti-glycation, carbonyl trapping and anti-inflammatory activities of chrysin derivatives. Molecules. 2018;23(7):1752. [DOI:10.3390/molecules23071752]
45. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews. 2010;4(8):118-126. [DOI:10.4103/0973-7847.70902]
46. Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug design, development and therapy. 2021;15:4503-25. [DOI:10.2147/DDDT.S327378]
47. Alam S, Sarker MM, Sultana TN, Chowdhury MN, Rashid MA, Chaity NI, et al. Antidiabetic phytochemicals from medicinal plants: prospective candidates for new drug discovery and development. Frontiers in endocrinology. 2022;13:800714. [DOI:10.3389/fendo.2022.800714]
48. Quade-Lyssy P, Kanarek AM, Baiersdörfer M, Postina R, Kojro E. Statins stimulate the production of a soluble form of the receptor for advanced glycation end products. Journal of lipid research. 2013;54(11):3052-61. [DOI:10.1194/jlr.M038968]
49. Spadaccio C, De Marco F, Di Domenico F, Coccia R, Lusini M, Barbato R, et al. Simvastatin attenuates the endothelial pro-thrombotic shift in saphenous vein grafts induced by Advanced glycation endproducts. Thrombosis Research. 2014;133(3):418-25. [DOI:10.1016/j.thromres.2013.12.023]
50. Guo Y, Lu M, Qian J, Cheng YL. Alagebrium chloride protects the heart against oxidative stress in aging rats. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2009;64(6):629-35. [DOI:10.1093/gerona/glp023]
51. Marx N, Walcher D, Ivanova N, Rautzenberg K, Jung A, Friedl R, et al. Thiazolidinediones reduce endothelial expression of receptors for advanced glycation end products. Diabetes. 2004;53(10):2662-8. [DOI:10.2337/diabetes.53.10.2662]
52. Lee BH, Hsu WH, Chang YY, Kuo HF, Hsu YW, Pan TM. Ankaflavin: a natural novel PPARγ agonist upregulates Nrf2 to attenuate methylglyoxal-induced diabetes in vivo. Free radical biology and medicine. 2012;53(11):2008-16. [DOI:10.1016/j.freeradbiomed.2012.09.025]
53. Lv X, Zhao S, Ning Z, Zeng H, Shu Y, Tao O, et al. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chemistry Central Journal. 2015;9:1-4. [DOI:10.1186/s13065-015-0145-9]
54. Wang L, Wang J, Fang L, Zheng Z, Zhi D, Wang S, et al. Anticancer activities of citrus peel polymethoxyflavones related to angiogenesis and others. BioMed research international. 2014;2014(1):453972. [DOI:10.1155/2014/453972]
55. Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL. Antioxidants in cardiovascular therapy: panacea or false hope?. Frontiers in cardiovascular medicine. 2015;2:29. [DOI:10.3389/fcvm.2015.00029]
56. Scalzo RL, Bauer TA, Harrall K, Moreau K, Ozemek C, Herlache L, et al. Acute vitamin C improves cardiac function, not exercise capacity, in adults with type 2 diabetes. Diabetology & metabolic syndrome. 2018;10:1-9. [DOI:10.1186/s13098-018-0306-9]
57. Goldenstein H, Levy NS, Lipener YT, Levy AP. Patient selection and vitamin E treatment in diabetes mellitus. Expert review of cardiovascular therapy. 2013;11(3):319-26. [DOI:10.1586/erc.12.187]
58. Sadowska-Bartosz I, Bartosz G. Prevention of protein glycation by natural compounds. Molecules. 2015;20(2):3309-34. [DOI:10.3390/molecules20023309]
59. Yin X, Chen K, Cheng H, Chen X, Feng S, Song Y, et al. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants. 2022; 11(1):153. [DOI:10.3390/antiox11010153]
60. Ueland PM, Ulvik A, Rios-Avila L, Midttun Ø, Gregory JF. Direct and functional biomarkers of vitamin B6 status. Annual review of nutrition. 2015;35(1):33-70. [DOI:10.1146/annurev-nutr-071714-034330]
61. Kumar D, Kumar S, Kohli S, Arya R, Gupta J. Antidiabetic activity of methanolic bark extract of Albizia odoratissima Benth. in alloxan induced diabetic albino mice. Asian Pacific Journal of Tropical Medicine. 2011;4(11):900-3. [DOI:10.1016/S1995-7645(11)60215-0]
62. Li YN, Guo Y, Xi MM, Yang P, Zhou XY, Yin S, et al. Saponins from Aralia taibaiensis attenuate D‐galactose‐induced aging in rats by activating FOXO3a and Nrf2 pathways. Oxidative medicine and cellular longevity. 2014;2014(1):320513. [DOI:10.1155/2014/320513]
63. Unoki-Kubota H, Yamagishi SI, Takeuchi M, Bujo H, Saito Y. Pyridoxamine, an inhibitor of advanced glycation end product (AGE) formation ameliorates insulin resistance in obese, type 2 diabetic mice. Protein and peptide letters. 2010;17(9):1177-81. [DOI:10.2174/092986610791760423]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.