Volume 17, Issue 2 (5-2025)                   IJDO 2025, 17(2): 97-109 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:
Mendeley  
Zotero  
RefWorks

Sefid F, Monshizadeh K, Ghenaatzadeh R, Roodgarpour Z, Azamirad G, Mirhosseini H. Antibody Engineering Toward Enhancement of Teplizumab Anti-CD3 Binding Affinity in Type 1 Diabetes Prevention and Treatment. IJDO 2025; 17 (2) :97-109
URL: http://ijdo.ssu.ac.ir/article-1-952-en.html
Research Center for Health Technology Assessment and Medical Informatics, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Abstract:   (48 Views)
Objective: The monoclonal antibodies with CD3 target have the potential to change the progression of type 1 diabetes (T1D) and enhance the longevity of beta-cell function. The main objective of the study is antibody engineering toward Enhancement of Teplizumab Anti-CD3 Binding Affinity in T1D prevention and treatment.
Materials and Methods: We aimed at finding the important amino acids of this antibody, and then replaced these amino acids with others to improve their binding affinity, and examine the binding affinity of antibody variants to antigens. In the end, we selected high-affinity variants of the antibody according to results of High Ambiguity Driven biomolecular DOCKing (HADDOCK).
Results: Our research indicated that 14 mutated variants were able to enhance the binding characteristics of Ab in comparison to standard antibodies.
Conclusion: The altered antibodies could serve as promising options for enhanced affinity binding to antigens, which could affect the specificity and sensitivity of antibodies.
 
Full-Text [PDF 1168 kb]   (9 Downloads)    
Type of Study: Research | Subject: Special
Received: 2025/01/25 | Accepted: 2025/04/20 | Published: 2025/05/31

References
1. Ashraf MT, Ahmed Rizvi SH, Kashif MA, Shakeel Khan MK, Ahmed SH, et al. Efficacy of anti‐CD3 monoclonal antibodies in delaying the progression of recent‐onset type 1 diabetes mellitus: a systematic review, meta‐analyses and meta‐regression. Diabetes, Obesity and Metabolism. 2023;25(11):3377-89. [DOI:10.1111/dom.15237]
2. Fanaropoulou NM, Tsatsani GC, Koufakis T, Kotsa K. Teplizumab: Promises and challenges of a recently approved monoclonal antibody for the prevention of type 1 diabetes or preservation of residual beta cell function. Expert Review of Clinical Immunology. 2024;20(2):185-96. [DOI:10.1080/1744666X.2023.2281990]
3. Sharma N, Das DD, Chawla PA. Journey of teplizumab: A promising drug in the treatment of type 1 diabetes mellitus. Current Diabetes Reviews. 2025;21(1):E250124226249. [DOI:10.2174/0115733998261825231026060241]
4. Atkinson MA, von Herrath M, Powers AC, Clare-Salzler M. Current concepts on the pathogenesis of type 1 diabetes-considerations for attempts to prevent and reverse the disease. Diabetes care. 2015;38(6):979. [DOI:10.2337/dc15-0144]
5. Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG. Analysis of islet inflammation in human type 1 diabetes. Clinical & Experimental Immunology. 2009;155(2):173-81. [DOI:10.1111/j.1365-2249.2008.03860.x]
6. Skowera A, Ellis RJ, Varela-Calviño R, Arif S, Huang GC, Van-Krinks C, Zaremba A, et al. CTLs are targeted to kill β cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope. The Journal of clinical investigation. 2008;118(10):3390-402. [DOI:10.1172/JCI35449]
7. Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nature reviews Disease primers. 2017;3(1):1-7. [DOI:10.1038/nrdp.2017.16]
8. Sherry NA, Tsai EB, Herold KC. Natural history of β-cell function in type 1 diabetes. Diabetes. 2005;54(suppl_2):S32-9. [DOI:10.2337/diabetes.54.suppl_2.S32]
9. Herold KC, Vignali DA, Cooke A, Bluestone JA. Type 1 diabetes: translating mechanistic observations into effective clinical outcomes. Nature Reviews Immunology. 2013;13(4):243-56. [DOI:10.1038/nri3422]
10. Kalra S, Mukherjee JJ, Venkataraman S, Bantwal G, Shaikh S, Saboo B, et al. Hypoglycemia: The neglected complication. Indian journal of endocrinology and metabolism. 2013;17(5):819-34. [DOI:10.4103/2230-8210.117219]
11. Nathan DM. The diabetes control and complications trial. Diabetes Care. 2014;37(1):9-16. [DOI:10.2337/dc13-2112]
12. Heidari E, Shafiee A, Noorian S, Rafiei MA, Abbasi M, Amini MJ, et al. Efficacy of teplizumab for treatment of type 1 diabetes: A meta‐analysis of randomized controlled trials. Diabetes/Metabolism Research and Reviews. 2024;40(4):e3806. [DOI:10.1002/dmrr.3806]
13. Herold KC, Gitelman SE, Gottlieb PA, Knecht LA, Raymond R, Ramos EL. Teplizumab: a disease-modifying therapy for type 1 diabetes that preserves β-cell function. Diabetes Care. 2023;46(10):1848-56. [DOI:10.2337/dc23-0675]
14. Kamrul-Hasan AB, Mondal S, Nagendra L, Yadav A, Aalpona FT, Dutta D. Role of teplizumab, a humanized anti-CD3 monoclonal antibody, in managing newly diagnosed type 1 diabetes: an updated systematic review and meta-analysis. Endocrine Practice. 2024. [DOI:10.1016/j.eprac.2024.03.006]
15. Kung PC, Goldstein G, Reinherz EL, Schlossman SF. Monoclonal antibodies defining distinctive human T cell surface antigens. Science. 1979;206(4416):347-9. [DOI:10.1126/science.314668]
16. Chatenoud L, Thervet E, Primo J, Bach JF. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proceedings of the National Academy of Sciences. 1994;91(1):123-7. [DOI:10.1073/pnas.91.1.123]
17. You S, Candon S, Kuhn C, Bach JF, Chatenoud L. CD3 antibodies as unique tools to restore self-tolerance in established autoimmunity: their mode of action and clinical application in type 1 diabetes. Advances in immunology. 2008;100:13-37. [DOI:10.1016/S0065-2776(08)00802-X]
18. Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nature Reviews Immunology. 2007;7(8):622-32. [DOI:10.1038/nri2134]
19. Chungyoun MF, Gray JJ. Ai models for protein design are driving antibody engineering. Current opinion in biomedical engineering. 2023;28:100473. [DOI:10.1016/j.cobme.2023.100473]
20. Fernández-Quintero ML, Loeffler JR, Bacher LM, Waibl F, Seidler CA, Liedl KR. Local and global rigidification upon antibody affinity maturation. Frontiers in molecular biosciences. 2020;7:182. [DOI:10.3389/fmolb.2020.00182]
21. Lee JH, Sutton HJ, Cottrell CA, Phung I, Ozorowski G, Sewall LM, et al. Long-primed germinal centres with enduring affinity maturation and clonal migration. Nature. 2022;609(7929):998-1004. [DOI:10.1038/s41586-022-05216-9]
22. Li M, Mei S, Yang Y, Shen Y, Chen L. Strategies to mitigate the on-and off-target toxicities of recombinant immunotoxins: an antibody engineering perspective. Antibody therapeutics. 2022;5(3):164-76. [DOI:10.1093/abt/tbac014]
23. MacLean AJ, Deimel LP, Zhou P, ElTanbouly MA, Merkenschlager J, Ramos V, et al. Affinity maturation of antibody responses is mediated by differential plasma cell proliferation. Science. 2025;387(6732):413-20. [DOI:10.1126/science.adr6896]
24. Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner B, Meng SM, et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nature biomedical engineering. 2021;5(6):600-12. [DOI:10.1038/s41551-021-00699-9]
25. Pirkalkhoran S, Grabowska WR, Kashkoli HH, Mirhassani R, Guiliano D, Dolphin C, et al. Bioengineering of antibody fragments: challenges and opportunities. Bioengineering. 2023;10(2):122. [DOI:10.3390/bioengineering10020122]
26. Kashalikar P, Desai S, Sanap A, Shekatkar M, Bhonde R. Narrative Review of Anti-CD3 Antibody and Anti-CD20 Antibody: Immunotherapeutic Strategies to Treat and Prevent Type 1 Diabetes. Recent Advances in Inflammation & Allergy Drug Discovery. 2023;17(1):64-70. [DOI:10.2174/2772270817666221122103029]
27. Kokori E, Olatunji G, Ogieuhi IJ, Aboje JE, Olatunji D, Aremu SA, et al. Teplizumab's immunomodulatory effects on pancreatic β-cell function in type 1 diabetes mellitus. Clinical Diabetes and Endocrinology. 2024;10(1):23. [DOI:10.1186/s40842-024-00181-w]
28. LeFevre JD, Cyriac SL, Tokmic A, Pitlick JM. Anti-CD3 monoclonal antibodies for the prevention and treatment of type 1 diabetes: A literature review. American Journal of Health-System Pharmacy. 2022;79(23):2099-117. [DOI:10.1093/ajhp/zxac244]
29. Liu Y, Li W, Chen Y, Wang X. Anti-CD3 monoclonal antibodies in treatment of type 1 diabetes: a systematic review and meta-analysis. Endocrine. 2024;83(2):322-9. [DOI:10.1007/s12020-023-03499-0]
30. Lledó-Delgado A, Preston-Hurlburt P, Currie S, Clark P, Linsley PS, Long SA, et al. Teplizumab induces persistent changes in the antigen-specific repertoire in individuals at risk for type 1 diabetes. The Journal of Clinical Investigation. 2024;134(18):e177492. [DOI:10.1172/JCI177492]
31. Galfre G, Milstein C.Preparation of monoclonal antibodies: Strategies and procedures. 1981;73(Pt B):3-46. [DOI:10.1016/0076-6879(81)73054-4]
32. Nourelden AZ, Elshanbary AA, El-Sherif LA, Benmelouka AY, Rohim HI, Helmy SK, et al. Safety and efficacy of teplizumab for treatment of type one diabetes mellitus: a systematic review and meta-analysis. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2021;21(10):1895-904. [DOI:10.2174/1871530320999201209222921]
33. Novograd J, Frishman WH. Teplizumab Therapy to Delay the Onset of Type 1 Diabetes. Cardiology in Review. 2024;32(6):572-6. [DOI:10.1097/CRD.0000000000000563]
34. Ramos EL, Dayan CM, Chatenoud L, Sumnik Z, Simmons KM, Szypowska A, et al. Teplizumab and β-cell function in newly diagnosed type 1 diabetes. New England Journal of Medicine. 2023;389(23):2151-61. [DOI:10.1056/NEJMoa2308743]
35. Sims EK, Bundy BN, Stier K, Serti E, Lim N, Long SA, et al. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Science translational medicine. 2021;13(583):eabc8980. [DOI:10.1126/scitranslmed.abc8980]
36. Thakkar S, Chopra A, Nagendra L, Kalra S, Bhattacharya S. Teplizumab in type 1 diabetes mellitus: an updated review. TouchREVIEWS in endocrinology. 2023;19(2):22. [DOI:10.17925/EE.2023.19.2.7]
37. Wu Q, Wei R, Liao X, Cui X, Wang H, Hong T. Anti-CD3 monoclonal antibody in treating patients with type 1 diabetes: an updated systematic review and meta-analysis. Cardiovascular Diabetology. 2025;24(1):146. [DOI:10.1186/s12933-021-01342-2]
38. Xu D, Alegre ML, Varga SS, Rothermel AL, Collins AM, Pulito VL, et al. In vitro characterization of five humanized OKT3 effector function variant antibodies. Cellular immunology. 2000;200(1):16-26. [DOI:10.1006/cimm.2000.1617]
39. Hagopian W, Ferry Jr RJ, Sherry N, Carlin D, Bonvini E, Johnson S, et al. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protégé trial. Diabetes. 2013;62(11):3901-8. [DOI:10.2337/db13-0236]
40. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. New England journal of medicine. 2005;352(25):2598-608. [DOI:10.1056/NEJMoa043980]
41. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. New England Journal of Medicine. 2002;346(22):1692-8. [DOI:10.1056/NEJMoa012864]
42. Herold KC, Gitelman SE, Ehlers MR, Gottlieb PA, Greenbaum CJ, Hagopian W, et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes. 2013;62(11):3766-74. [DOI:10.2337/db13-0345]
43. Sherry N, Hagopian W, Ludvigsson J, Jain SM, Wahlen J, Ferry RJ, et al. Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial. The Lancet. 2011;378(9790):487-97. [DOI:10.1016/S0140-6736(11)60931-8]
44. Vajda S, Porter KA, Kozakov D. Progress toward improved understanding of antibody maturation. Current opinion in structural biology. 2021;67:226-31. [DOI:10.1016/j.sbi.2020.11.008]
45. Zhang S, Wu L, Dang M. Antibody mimetics: The next generation antibody engineering, a retrospective and prospective analysis. Biotechnology Journal. 2024;19(1):2300532. [DOI:10.1002/biot.202300532]
46. Bostrom J, Lee CV, Haber L, Fuh G. Improving antibody binding affinity and specificity for therapeutic development. Therapeutic Antibodies: Methods and Protocols. 2009:353-76. [DOI:10.1007/978-1-59745-554-1_19]
47. Dinnis DM, James DC. Engineering mammalian cell factories for improved recombinant monoclonal antibody production: lessons from nature?. Biotechnology and bioengineering. 2005;91(2):180-9. [DOI:10.1002/bit.20499]
48. Kiyoshi M, Caaveiro JM, Miura E, Nagatoishi S, Nakakido M, Soga S, et al. Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex. PloS one. 2014;9(1):e87099. [DOI:10.1371/journal.pone.0087099]
49. Eyvazi S, Payandeh Z, Khalili S, Sefid F, Ouladsahebmadarek E. Bevacizumab Antibody Affinity Maturation to Improve Ovarian Cancer Immunotherapy: In Silico Approach. International Journal of Peptide Research and Therapeutics. 2019;25:1417-30. [DOI:10.1007/s10989-018-9787-5]
50. Sefid F, Alagheband Bahrami A, Darvish M, Nazarpour R, Payandeh Z. In silico analysis for determination and validation of iron-regulated protein from Escherichia coli. International Journal of Peptide Research and Therapeutics. 2019;25:1523-37. [DOI:10.1007/s10989-018-9797-3]
51. Sefid F, Alagheband Bahrami A, Payandeh Z, Khalili S, Azamirad G, Kalantar SM, et al. Ofatumumab and Granzyme B as immunotoxin against CD20 antigen. In silico pharmacology. 2022;10(1):6. [DOI:10.1007/s40203-022-00120-6]
52. Sefid F, Azamirad G, Asadollahi S, Kalantar SM, Khalilzade SH, Mehrjardi MY. Common Polymorphisms Identified In Patients with Type 2 Diabetes Mellitus Revealed From Next-Generation Sequencing Analysis. Iranian journal of diabetes and obesity. 2023;15(2):73-80. [DOI:10.18502/ijdo.v15i2.12964]
53. Sefid F, Baghban R, Payandeh Z, Khalesi B, Mahmoudi Gomari M. Structure evaluation of iron for designing a vaccine against Escherichia Coli, an in silico approach. Journal of Medical Microbiology and Infectious Diseases. 2019;7(4):93-106. [DOI:10.29252/JoMMID.7.4.93]
54. Sefid F, Khalesi B, Mansoori B, Fotovvat M, Touhidinia M. Enhancement of SARS-CoV-2 Receptor Binding Domain-CR3022 Human Antibody Binding Affinity via In silico Engineering Approach. Journal of Medical Microbiology and Infectious Diseases. 2021;9(3):156-69. [DOI:10.52547/JoMMID.9.3.156]
55. Sefid F, Monshizadeh K, Azamirad G, Mehrjardi MY. Antibody Engineering to Enhancement of Ranibizumab Binding Affinity for the Prevention and Treatment of Diabetic Retinopathy. Iranian journal of diabetes and obesity. 2024;16(2)112-121. [DOI:10.18502/ijdo.v16i2.15710]
56. Sefid F, Payandeh Z, Azamirad G, Abdolhamidi R, Rasooli I. In silico engineering towards enhancement of bap-VHH monoclonal antibody binding affinity. International Journal of Peptide Research and Therapeutics. 2019;25:273-87. [DOI:10.1007/s10989-017-9670-9]
57. Sefid F, Payandeh Z, Azamirad G, Baradaran B, Nabi Afjadi M, Islami M, et al. Atezolizumab and granzyme B as immunotoxin against PD-L1 antigen; an insilico study. In silico pharmacology. 2021;9(1):20. [DOI:10.1007/s40203-021-00076-z]
58. Sefid F, Payandeh Z, Azamirad G, Rasooli I. Antibody Engineering Towards Enhancement of Spike Protein SARS-COV-2-m396 Binding Affinity. Regeneration, Reconstruction & Restoration(Triple R).2020;5(1): e24.
59. Sefid F, Payandeh Z, Khalili S, Hashemi ZS, Zakeri A, Alagheband Bahrami A, et al. In Silico Characterization of Epitopes for Vaccine Design against Escherichia coli based on Heme-Utilization Protein. Journal of Applied Biotechnology Reports. 2024;11(1):1207-19.
60. Sefid F, Rasooli I, Payandeh Z. Homology modeling of a Camelid antibody fragment against a conserved region of Acinetobacter baumannii biofilm associated protein (Bap). Journal of theoretical biology. 2016;397:43-51. [DOI:10.1016/j.jtbi.2016.02.015]
61. Khan MA, Turjya RR, Islam AB. Computational engineering the binding affinity of Adalimumab monoclonal antibody for designing potential biosimilar candidate. Journal of Molecular Graphics and Modelling. 2021;102:107774. [DOI:10.1016/j.jmgm.2020.107774]
62. Muecksch F, Weisblum Y, Barnes CO, Schmidt F, Schaefer-Babajew D, Wang Z, et al. Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity. 2021;54(8):1853-68. [DOI:10.1016/j.immuni.2021.07.008]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.