Volume 13, Issue 1 (volume 13, number 1 2021)                   IJDO 2021, 13(1): 57-64 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hashemi Taklimi M, Shadmehri S. Changes in Mitochondrial Dynamic Factors (mfn2 and drp1) Following High Intensity Interval Training and Moderate Intensity Continuous Training in Obese Male Rats. IJDO. 2021; 13 (1) :57-64
URL: http://ijdo.ssu.ac.ir/article-1-612-en.html
Department of Physical Education and Sport Sciences, Yadegar-e-imam Khomeini (RAH) Shahr-e Ray Branch, Islamic Azad University, Tehran, Iran
Abstract:   (104 Views)
Objective: Mitochondrial content and function are important determinants of oxidative capacity and metabolic efficiency of skeletal muscle tissue. The aim of this study was to investigate the changes in mitochondrial dynamic factors (mfn2 and drp1) following high intensity interval training (HIIT) and moderate intensity continuous training (MICT) in obese male rats.
Materials and Methods: In this experimental study, 40 male wistar rats after inducing obesity with high fat diet (for 10 weeks), eight rats from the high-fat diet group (O) and eight rats of the standard dietary group (C) were sacrificed and other obese rats were randomly divided into three groups: obesity control (OC), MICT and HIIT groups. The HIIT protocol includes 10 bouts of 4-minute activity with intensity of 85-90% vo2max and 2-minute active rest periods and MICT protocol with intensity of 65-70% VO2max with covered distance was matched to that of HIT protocol for 12 weeks and 5 sessions per week. Protein levels of mfn2 and drp1 soleus muscle were measured by Western blot. For analyzing the data, One-way ANOVA and Tukey post hoc with SPSS–23 and the significance level was P-value≤ 0.05.
Results: Induction of obesity was associated with a significant decrease in soleus muscle mfn2 and drp1 (P-value= 0.001). The intervention of HIIT and MICT significantly increased of mfn2 and drp1 compared to control group (P-value= 0.001). Also, mfn2 and drp1 were significantly higher in HIIT compared to MICT group (P-value= 0.001).
Conclusion: It seems that HIIT and MICT increase the mitochondrial dynamic factors in skeletal muscle, and the effects of HIIT are significantly higher
Full-Text [PDF 153 kb]   (52 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/03/13 | Accepted: 2021/03/20 | Published: 2021/03/20

1. Ward ZJ, Bleich SN, Cradock AL, Barrett JL, Giles CM, Flax C, et al. Projected US state-level prevalence of adult obesity and severe obesity. New England Journal of Medicine. 2019;381(25):2440-50. [DOI:10.1056/NEJMsa1909301]
2. Kojta I, Chacińska M, Błachnio-Zabielska A. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients. 2020;12(5):1305. [DOI:10.3390/nu12051305]
3. Hu Z, Wang H, Lee IH, Modi S, Wang X, Du J, et al. PTEN inhibition improves muscle regeneration in mice fed a high-fat diet. Diabetes. 2010;59(6):1312-20. [DOI:10.2337/db09-1155]
4. Greene NP, Nilsson MI, Washington TA, Lee DE, Brown LA, Papineau AM, et al. Impaired exercise-induced mitochondrial biogenesis in the obese Zucker rat, despite PGC-1α induction, is due to compromised mitochondrial translation elongation. American Journal of Physiology-Endocrinology and Metabolism. 2014;306(5):E503-11. [DOI:10.1152/ajpendo.00671.2013]
5. Siasos G, Paschou SA, Tousoulis D. Mitochondria and diabetes. Annals of translational medicine. 2020; 8(6): 262. [DOI:10.21037/atm.2020.03.15]
6. Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337(6098):1062-5. [DOI:10.1126/science.1219855]
7. Ni HM, Williams JA, Ding WX. Mitochondrial dynamics and mitochondrial quality control. Redox biology. 2015;4:6-13. [DOI:10.1016/j.redox.2014.11.006]
8. Losón OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Molecular biology of the cell. 2013;24(5):659-67. [DOI:10.1091/mbc.e12-10-0721]
9. Axelrod CL, Fealy CE, Mulya A, Kirwan JP. Exercise training remodels human skeletal muscle mitochondrial fission and fusion machinery towards a pro‐elongation phenotype. Acta Physiologica. 2019;225(4):e13216. [DOI:10.1111/apha.13216]
10. De Las Heras N, Klett-Mingo M, Ballesteros S, Martín-Fernández B, Escribano Ó, Blanco-Rivero J, et al. Chronic exercise improves mitochondrial function and insulin sensitivity in brown adipose tissue. Frontiers in physiology. 2018;9:1122. [DOI:10.3389/fphys.2018.01122]
11. Bartlett JD, Hwa Joo C, Jeong TS, Louhelainen J, Cochran AJ, Gibala MJ, et al. Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. Journal of applied physiology. 2012;112(7):1135-43. [DOI:10.1152/japplphysiol.01040.2011]
12. Talanian JL, Galloway SD, Heigenhauser GJ, Bonen A, Spriet LL. Two weeks of high-intensity aerobic interval training increases the capacity for fat oxidation during exercise in women. Journal of Applied Physiology 2007; 102(4): 1439-47. [DOI:10.1152/japplphysiol.01098.2006]
13. Sijie T, Hainai Y, Fengying Y, Jianxiong W. High intensity interval exercise training in overweight young women. The Journal of sports medicine and physical fitness. 2012;52(3):255-62.
14. Cheema BS, Davies TB, Stewart M, Papalia S, Atlantis E. The feasibility and effectiveness of high-intensity boxing training versus moderate-intensity brisk walking in adults with abdominal obesity: a pilot study. BMC sports science, medicine and rehabilitation. 2015;7(1):1-0.: 385-96. [DOI:10.1186/2052-1847-7-3]
15. Maillard F, Pereira B, Boisseau N. Effect of high-intensity interval training on total, abdominal and visceral fat mass: a meta-analysis. Sports Medicine. 2018;48(2):269-88. [DOI:10.1007/s40279-017-0807-y]
16. Chomentowski P, Coen PM, Radiková Z, Goodpaster BH, Toledo FG. Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. The Journal of Clinical Endocrinology & Metabolism. 2011;96(2):494-503. [DOI:10.1210/jc.2010-0822]
17. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PloS one. 2014;9(3):e92193. [DOI:10.1371/journal.pone.0092193]
18. Hafstad AD, Lund J, Hadler-Olsen E, Höper AC, Larsen TS, Aasum E. High-and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity. Diabetes. 2013;62(7):2287-94. [DOI:10.2337/db12-1580]
19. Fealy CE, Mulya A, Lai N, Kirwan JP. Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle. Journal of Applied Physiology. 2014;117(3):239-45. [DOI:10.1152/japplphysiol.01064.2013]
20. Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. The Journal of physiology. 2010;588(23):4795-810. [DOI:10.1113/jphysiol.2010.199448]
21. Kruse R, Pedersen AJ, Kristensen JM, Petersson SJ, Wojtaszewski JF, Højlund K. Intact initiation of autophagy and mitochondrial fission by acute exercise in skeletal muscle of patients with Type 2 diabetes. Clinical Science. 2017;131(1):37-47. [DOI:10.1042/CS20160736]
22. Skuratovskaia D, Komar A, Vulf M, Litvinova L. Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ. 2020;8:e9741. [DOI:10.7717/peerj.9741]
23. Liu R, Jin P, Wang Y, Han L, Shi T, Li X. Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PloS one. 2014;9(3):e92810. [DOI:10.1371/journal.pone.0092810]
24. Jheng HF, Tsai PJ, Guo SM, Kuo LH, Chang CS, Su IJ, et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Molecular and cellular biology. 2012;32(2):309-19. [DOI:10.1128/MCB.05603-11]
25. Jiang HK, Wang YH, Sun L, He X, Zhao M, Feng ZH, et al. Aerobic interval training attenuates mitochondrial dysfunction in rats post-myocardial infarction: roles of mitochondrial network dynamics. International journal of molecular sciences. 2014;15(4):5304-22. [DOI:10.3390/ijms15045304]
26. Huertas JR, Ruiz‐Ojeda FJ, Plaza‐Díaz J, Nordsborg NB, Martín‐Albo J, Rueda‐Robles A, et al. Human muscular mitochondrial fusion in athletes during exercise. The FASEB Journal. 2019;33(11):12087-98. [DOI:10.1096/fj.201900365RR]
27. Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. Journal of experimental biology. 2006;209(12):2265-75. [DOI:10.1242/jeb.02182]
28. Chan DC. Mitochondrial fusion and fission in mammals. Annu. Rev. Cell Dev. Biol.. 2006;22:79-99. [DOI:10.1146/annurev.cellbio.22.010305.104638]
29. Ding H, Jiang N, Liu H, Liu X, Liu D, Zhao F, et al. Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochimica et Biophysica Acta (BBA)-General Subjects. 2010;1800(3):250-6. [DOI:10.1016/j.bbagen.2009.08.007]
30. Cartoni R, Léger B, Hock MB, Praz M, Crettenand A, Pich S, et al. Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise. The Journal of physiology. 2005;567(1):349-58. [DOI:10.1113/jphysiol.2005.092031]
31. Tao L, Bei Y, Lin S, Zhang H, Zhou Y, Jiang J, et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cellular Physiology and Biochemistry. 2015;37(1):162-75. [DOI:10.1159/000430342]
32. Picard M, Gentil BJ, McManus MJ, White K, St. Louis K, Gartside SE, et al. Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. Journal of applied physiology. 2013;115(10):1562-71. [DOI:10.1152/japplphysiol.00819.2013]
33. Trudeau K, Molina AJ, Guo W, Roy S. High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy. The American journal of pathology. 2010;177(1):447-55. [DOI:10.2353/ajpath.2010.091029]
34. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. Journal of Biological Chemistry. 2005;280(28):26185-92. [DOI:10.1074/jbc.M503062200]
35. Van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harbor perspectives in biology. 2013;5(6):a011072. [DOI:10.1101/cshperspect.a011072]

Add your comments about this article : Your username or Email:

© 2021 All Rights Reserved | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb