Volume 14, Issue 1 (volume 14, number 1 2022)                   IJDO 2022, 14(1): 55-61 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sadeghi M, Miroliaei M. The Antiglycation Ability of Typical Medicinal Plants, Natural and Synthetic Compounds: A Review. IJDO. 2022; 14 (1) :55-61
URL: http://ijdo.ssu.ac.ir/article-1-688-en.html
Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran.
Abstract:   (188 Views)
Given the prevalence of diabetes and the increasing number of diabetics, it is essential to find medicines to decrease the chronic complications of diabetes. Several studies have demonstrated that chronic hyperglycemia and its complications are directly related to protein glycation. Thus, identifying natural inhibitors to stop glycation of proteins may play a crucial role in managing the chronic complications of diabetes. Currently, various natural and synthetic compounds with anti-glycation attributes have been reported. The use of natural compounds in herbs (medicinal and non-medicinal) may be of particular importance due to fewer side effects and a wide range of therapeutic properties. Accordingly, this mini-review provides a list of common natural medicines and synthetic compounds with anti-glycation activity. As well, it provides brief information on the formation of advanced glycosylated end products (AGEs), their side effects, and glycation prevention mechanisms.
Full-Text [PDF 399 kb]   (84 Downloads)    
Type of Study: Research | Subject: Special
Received: 2021/11/8 | Accepted: 2022/01/5 | Published: 2022/02/26

References
1. Rahmanifar E, Miroliaei M. Differential effect of biophenols on attenuation of AGE-induced hemoglobin aggregation. International Journal of Biological Macromolecules. 2020;151:797-805. [DOI:10.1016/j.ijbiomac.2020.02.127]
2. Dil FA, Ranjkesh Z, Goodarzi MT. A systematic review of antiglycation medicinal plants. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019;13(2):1225-9. [DOI:10.1016/j.dsx.2019.01.053]
3. Nagaraj RH, Sarkar P, Mally A, Biemel KM, Lederer MO, Padayatti PS. Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal. Archives of biochemistry and biophysics. 2002;402(1):110-9. [DOI:10.1016/S0003-9861(02)00067-X]
4. Singh RB, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129-46. [DOI:10.1007/s001250051591]
5. Lapolla A, Flamini R, Dalla Vedova A, Senesi A, Reitano R, Fedele D, et al. Glyoxal and methylglyoxal levels in diabetic patients: quantitative determination by a new GC/MS method. Clinical Chemistry and Laboratory Medicine (CCLM). 2003;41(9):1166-73. [DOI:10.1515/CCLM.2003.180]
6. Sadeghi M, Miroliaei M, Shorakai Z. In Silico Investigation of Flavanone Compounds' Inhibitory Effects on Alpha-Amylase Enzyme and Predicting their Inhibitory Role in Diabetes Progression. Journal of Fasa University of Medical Sciences. 2020;10(4):2786-95.(in Persian)
7. Yeh WJ, Hsia SM, Lee WH, Wu CH. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. Journal of food and drug analysis. 2017;25(1):84-92. [DOI:10.1016/j.jfda.2016.10.017]
8. Ahmed N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes research and clinical practice. 2005;67(1):3-21. [DOI:10.1016/j.diabres.2004.09.004]
9. Lapolla A, Piarulli F, Sartore G, Ceriello A, Ragazzi E, Reitano R, et al. Advanced glycation end products and antioxidant status in type 2 diabetic patients with and without peripheral artery disease. Diabetes care. 2007;30(3):670-6. [DOI:10.2337/dc06-1508]
10. Afshari M, Rahimmalek M, Miroliaei M. Variation in polyphenolic profiles, antioxidant and antimicrobial activity of different Achillea species as natural sources of antiglycative compounds. Chemistry & biodiversity. 2018;15(8):e1800075. [DOI:10.1002/cbdv.201800075]
11. Miroliaei M, Khazaei S, Moshkelgosha S, Shirvani M. Inhibitory effects of Lemon balm (Melissa officinalis, L.) extract on the formation of advanced glycation end products. Food chemistry. 2011;129(2):267-71. [DOI:10.1016/j.foodchem.2011.04.039]
12. Yeh WJ, Yang HY, Pai MH, Wu CH, Chen JR. Long-term administration of advanced glycation end-product stimulates the activation of NLRP3 inflammasome and sparking the development of renal injury. The Journal of nutritional biochemistry. 2017;39:68-76. [DOI:10.1016/j.jnutbio.2016.09.014]
13. Tan D, Wang Y, Lo CY, Sang S, Ho CT. Methylglyoxal: its presence in beverages and potential scavengers. Annals of the New York academy of sciences. 2008;1126(1):72-5. [DOI:10.1196/annals.1433.027]
14. Chen H, Virk MS, Chen F. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures. International Journal of Food Sciences and Nutrition. 2016;67(4):400-11. [DOI:10.3109/09637486.2016.1166187]
15. Gugliucci A, Menini T. The botanical extracts of Achyrocline satureoides and Ilex paraguariensis prevent methylglyoxal-induced inhibition of plasminogen and antithrombin III. Life Sciences. 2002;72(3):279-92. [DOI:10.1016/S0024-3205(02)02242-7]
16. Miroliaei M, Shafaei P, Aminjafari A, Barati D, Meekins R. Protection against Advanced Glycation End Products and the Mode of Action of Lemon Balm on Hemoglobin Fructose-Mediated Glycation. Medical Chemistry. 2017;7:314-20. [DOI:10.4172/2161-0444.1000474]
17. Ribeiro MA, Bernardo-Gil MG, Esquıvel MM. Melissa officinalis, L.: study of antioxidant activity in supercritical residues. The Journal of Supercritical Fluids. 2001;21(1):51-60. [DOI:10.1016/S0896-8446(01)00078-X]
18. Rahimmalek M, Afshari M, Sarfaraz D, Miroliaei M. Using HPLC and multivariate analyses to investigate variations in the polyphenolic compounds as well as antioxidant and antiglycative activities of some Lamiaceae species native to Iran. Industrial Crops and Products. 2020;154:112640. [DOI:10.1016/j.indcrop.2020.112640]
19. Franco RR, da Silva Carvalho D, de Moura FB, Justino AB, Silva HC, Peixoto LG, et al. Antioxidant and anti-glycation capacities of some medicinal plants and their potential inhibitory against digestive enzymes related to type 2 diabetes mellitus. Journal of ethnopharmacology. 2018;215:140-6. [DOI:10.1016/j.jep.2017.12.032]
20. Kim HY, Moon BH, Lee HJ, Choi DH. Flavonol glycosides from the leaves of Eucommia ulmoides O. with glycation inhibitory activity. Journal of Ethnopharmacology. 2004;93(2-3):227-30. [DOI:10.1016/j.jep.2004.03.047]
21. Hosseini M, Asgary S, Najafi S. Inhibitory potential of pure isoflavonoids, red clover, and alfalfa extracts on hemoglobin glycosylation. ARYA atherosclerosis. 2015;11(2):133.
22. Lee EH, Song DG, Lee JY, Pan CH, Um BH, Jung SH. Flavonoids from the leaves of Thuja orientalis inhibit the aldose reductase and the formation of advanced glycation endproducts. Journal of the Korean Society for Applied Biological Chemistry. 2009;52(5):448-55. [DOI:10.3839/jksabc.2009.078]
23. Safari MR, Azizi O, Heidary SS, Kheiripour N, Ravan AP. Antiglycation and antioxidant activity of four Iranian medical plant extracts. Journal of pharmacopuncture. 2018;21(2):82. [DOI:10.3831/KPI.2018.21.010]
24. Chetyrkin S, Mathis M, Pedchenko V, Sanchez OA, McDonald WH, Hachey DL, Madu H, Stec D, Hudson B, Voziyan P. Glucose autoxidation induces functional damage to proteins via modification of critical arginine residues. Biochemistry. 2011 ;50(27):6102-12. [DOI:10.1021/bi200757d]
25. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology. 2007 ;39(1):44-84. [DOI:10.1016/j.biocel.2006.07.001]
26. Goodarzi MT, Safari MR, Zal F. Cytotoxic effect of" glycated albumin-transition metal ion" on rat hepatocyte suspension. Iranian Biomedical Journal. 2006;10(3):139-43.
27. Yamagishi SI, Maeda S, Matsui T, Ueda S, Fukami K, Okuda S. Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochimica et Biophysica Acta (BBA)-General Subjects. 2012 ;1820(5):663-71. [DOI:10.1016/j.bbagen.2011.03.014]
28. Vlassara H, Palace MR. Diabetes and advanced glycation endproducts. Journal of internal medicine. 2002;251(2):87-101. [DOI:10.1046/j.1365-2796.2002.00932.x]
29. Ott C, Jacobs K, Haucke E, Santos AN, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox biology. 2014;2:411-29. [DOI:10.1016/j.redox.2013.12.016]
30. Goh SY, Cooper ME. The role of advanced glycation end products in progression and complications of diabetes. The Journal of Clinical Endocrinology & Metabolism. 2008;93(4):1143-52. [DOI:10.1210/jc.2007-1817]
31. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006 ;114(6):597-605. [DOI:10.1161/CIRCULATIONAHA.106.621854]
32. Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, et al. Effect of collagen turnover on the accumulation of advanced glycation end products. Journal of Biological Chemistry. 2000 ;275(50):39027-31. [DOI:10.1074/jbc.M006700200]
33. Reddy VP, Beyaz A. Inhibitors of the Maillard reaction and AGE breakers as therapeutics for multiple diseases. Drug discovery today. 2006;11(13-14):646-54. [DOI:10.1016/j.drudis.2006.05.016]
34. Marchetti P. Advanced glycation end products (AGEs) and their receptors (RAGEs) in diabetic vascular disease. Medicographia. 2009;31(3):257-65.
35. Shi Y, Qian J, Zhang Q, Hu Y, Sun D, Jiang L. Advanced glycation end products increased placental vascular permeability of human BeWo cells via RAGE/NF-kB signaling pathway. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2020;250:93-100. [DOI:10.1016/j.ejogrb.2020.04.058]
36. Yano T, Hagiwara Y, Ando A, Kanazawa K, Koide M, Sekiguchi T, et al. RAGE-dependent NF-kB inflammation processes in the capsule of frozen shoulders. Journal of Shoulder and Elbow Surgery. 2020;29(9):1884-91. [DOI:10.1016/j.jse.2020.01.076]
37. Adamopoulos C, Piperi C, Gargalionis AN, Dalagiorgou G, Spilioti E, Korkolopoulou P, et al. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2-NF-κB and JNK-AP-1 signaling pathways. Cellular and Molecular Life Sciences. 2016 ;73(8):1685-98. [DOI:10.1007/s00018-015-2091-z]
38. Dacks JB, Robinson MS. Outerwear through the ages: evolutionary cell biology of vesicle coats. Current opinion in cell biology. 2017;47:108-16. [DOI:10.1016/j.ceb.2017.04.001]
39. Sun M, Li Y, Bu W, Zhao J, Zhu J, Gu L, et al. DJC suppresses advanced glycation end products-induced JAK-STAT signaling and ROS in mesangial cells. Evidence-Based Complementary and Alternative Medicine. 2017;2017. [DOI:10.1155/2017/2942830]
40. Oh H, Park SH, Kang MK, Kim YH, Lee EJ, Kim DY, et al. Asaronic acid attenuates macrophage activation toward M1 phenotype through inhibition of NF-κB pathway and JAK-STAT signaling in glucose-loaded murine macrophages. Journal of agricultural and food chemistry. 2019;67(36):10069-78. [DOI:10.1021/acs.jafc.9b03926]
41. Boussahel S, Cacciola F, Dahamna S, Mondello L, Saija A, Cimino F, et al. Flavonoid profile, antioxidant and antiglycation properties of Retama sphaerocarpa fruits extracts. Natural product research. 2018;32(16):1911-9. [DOI:10.1080/14786419.2017.1356835]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb