Volume 14, Issue 3 (volume 14, number 3 2022)                   IJDO 2022, 14(3): 183-188 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farhadi Z, Khaksari M. A Review on 17-β estradiol a Potent Therapeutic Factor of Diabetic Cardiomyopathy. IJDO 2022; 14 (3) :183-188
URL: http://ijdo.ssu.ac.ir/article-1-732-en.html
Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
Abstract:   (221 Views)
Type 2 diabetes causes structural and functional changes in the myocardium, which is called cardiomyopathy. Diabetic cardiomyopathy (DCM) is a distinct primary disorder process, independent of coronary artery disease, which leads to heart failure in diabetic patients. Also, DCM is a multifaceted disorder that is one of the leading causes of death in elderly and postmenopausal women. Menopause is associated with decreased and stopped ovarian function, which reduces and stops the production of ovarian hormones, especially estrogen. Moreover, menopause is associated with an increased risk of cardiovascular diseases. Sex steroids such as 17-β estradiol have a variety of protective effects on many tissues in the body, including the cardiovascular system. In this article, the concept of DCM, the underlying molecular signaling pathway, and, finally, the role of 17-β estradiol as one of the most important estrogens in moderating DCM are discussed to provide a theoretical basis for in-depth study.
Full-Text [PDF 206 kb]   (59 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/04/12 | Accepted: 2022/08/8 | Published: 2022/09/19

References
1. Nakamura M, Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. The Journal of physiology. 2020 ;598(14):2977-93. [DOI:10.1113/JP276747]
2. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. The American journal of cardiology. 1972 ;30(6):595-602. [DOI:10.1016/0002-9149(72)90595-4]
3. Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Reviews in Endocrine and Metabolic Disorders. 2010 ;11(1):31-9. [DOI:10.1007/s11154-010-9131-7]
4. Luo T, Kim JK. The role of estrogen and estrogen receptors on cardiomyocytes: an overview. Canadian Journal of Cardiology. 2016 ;32(8):1017-25. [DOI:10.1016/j.cjca.2015.10.021]
5. Chakrabarti S, Morton JS, Davidge ST. Mechanisms of estrogen effects on the endothelium: an overview. Canadian Journal of cardiology. 2014 ;30(7):705-12. [DOI:10.1016/j.cjca.2013.08.006]
6. Azizian H, Khaksari M, Esmailidehaj M, Farhadi Z. Cardioprotective and anti-inflammatory effects of G-protein coupled receptor 30 (GPR30) on postmenopausal type 2 diabetic rats. Biomedicine & Pharmacotherapy. 2018 ;108:153-64. [DOI:10.1016/j.biopha.2018.09.028]
7. Thor D, Uchizono JA, Lin-Cereghino GP, Rahimian R. The effect of 17 β-estradiol on intracellular calcium homeostasis in human endothelial cells. European journal of pharmacology. 2010 ;630(1-3):92-9. [DOI:10.1016/j.ejphar.2009.12.030]
8. Cohen A, Ross NW, Smith PM, Fawcett JP. Analysis of 17β‐estradiol, estriol and estrone in American eel (Anguilla rostrata) tissue samples using liquid chromatography coupled to electrospray differential ion mobility tandem mass spectrometry. Rapid Communications in Mass Spectrometry. 2017 ;31(10):842-50. [DOI:10.1002/rcm.7853]
9. Pepermans RA, Sharma G, Prossnitz ER. G protein-coupled estrogen receptor in cancer and stromal cells: functions and novel therapeutic perspectives. Cells. 2021 ;10(3):672. [DOI:10.3390/cells10030672]
10. Shi H, Kumar SP, Liu X. G protein-coupled estrogen receptor in energy homeostasis and obesity pathogenesis. Progress in Molecular Biology and Translational Science. 2013 ;114:193-250. [DOI:10.1016/B978-0-12-386933-3.00006-6]
11. Barros RP, Gustafsson JA. Estrogen receptors and the metabolic network. Cell metabolism. 2011 ;14(3):289-99. [DOI:10.1016/j.cmet.2011.08.005]
12. Meyer MR, Prossnitz ER, Barton M. The G protein-coupled estrogen receptor GPER/GPR30 as a regulator of cardiovascular function. Vascular pharmacology. 2011 ;55(1-3):17-25. [DOI:10.1016/j.vph.2011.06.003]
13. Lösel R, Wehling M. Nongenomic actions of steroid hormones. Nature reviews Molecular cell biology. 2003 ;4(1):46-55. [DOI:10.1038/nrm1009]
14. Cushman M. Effects of hormone replacement therapy and estrogen receptor modulators on markers of inflammation and coagulation. The American journal of cardiology. 2002 ;90(1):F7-10. [DOI:10.1016/S0002-9149(02)02419-0]
15. Demyanets S, Pfaffenberger S, Kaun C, Rega G, Speidl WS, Kastl SP, et al. The estrogen metabolite 17β-dihydroequilenin counteracts interleukin-1α induced expression of inflammatory mediators in human endothelial cells in vitro via NF-κB pathway. Thrombosis and haemostasis. 2006;95(01):107-16. [DOI:10.1160/TH05-05-0333]
16. Lee C, Kim J, Jung Y. Potential therapeutic application of estrogen in gender disparity of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Cells. 2019 ;8(10):1259. [DOI:10.3390/cells8101259]
17. Hoffman RP, Dye AS, Huang H, Bauer JA. Glycemic variability predicts inflammation in adolescents with type 1 diabetes. Journal of Pediatric Endocrinology and Metabolism. 2016 ;29(10):1129-33. [DOI:10.1515/jpem-2016-0139]
18. Blomberg BA, de Jong PA, Thomassen A, Lam MG, Vach W, Olsen MH, et al. Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study. European journal of nuclear medicine and molecular imaging. 2017 ;44(2):249-58. [DOI:10.1007/s00259-016-3552-9]
19. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circulation research. 2005 ;96(9):939-49. [DOI:10.1161/01.RES.0000163635.62927.34]
20. Vollenweider P, Eckardstein AV, Widmann C. HDLs, diabetes, and metabolic syndrome. High Density Lipoproteins. 2015:405-21. [DOI:10.1007/978-3-319-09665-0_12]
21. Foscolou A, Magriplis E, Tyrovolas S, Chrysohoou C, Sidossis L, Matalas AL, et al. The association of protein and carbohydrate intake with successful aging: a combined analysis of two epidemiological studies. European journal of nutrition. 2019 ;58(2):807-17. [DOI:10.1007/s00394-018-1693-2]
22. Sharma G, Hu C, Brigman JL, Zhu G, Hathaway HJ, Prossnitz ER. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology. 2013 ;154(11):4136-45. [DOI:10.1210/en.2013-1357]
23. Han G, Li F, Yu X, White RE. GPER: a novel target for non-genomic estrogen action in the cardiovascular system. Pharmacological research. 2013 ;71:53-60. [DOI:10.1016/j.phrs.2013.02.008]
24. Azizian H, Khaksari M, Asadikaram G, Sepehri G, Najafipour H. Therapeutic effects of tamoxifen on metabolic parameters and cytokines modulation in rat model of postmenopausal diabetic cardiovascular dysfunction: Role of classic estrogen receptors. International immunopharmacology. 2018 ;65:190-8. [DOI:10.1016/j.intimp.2018.10.009]
25. Ebrahimi MN, Khaksari M, Sepehri G, Karam GA, Raji-Amirhasani A, Azizian H. The effects of alone and combination tamoxifen, raloxifene and estrogen on lipid profile and atherogenic index of ovariectomized type 2 diabetic rats. Life Sciences. 2020 ;263:118573. [DOI:10.1016/j.lfs.2020.118573]
26. Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocrine reviews. 2008 ;29(1):42-61. [DOI:10.1210/er.2007-0015]
27. Zhao Z. Endoplasmic reticulum stress in maternal diabetes‐induced cardiac malformations during critical cardiogenesis period. Birth Defects Research Part B: Developmental and Reproductive Toxicology. 2012 ;95(1):1-6. [DOI:10.1002/bdrb.20277]
28. Lan B, He Y, Sun H, Zheng X, Gao Y, Li N. The roles of mitochondria-associated membranes in mitochondrial quality control under endoplasmic reticulum stress. Life sciences. 2019 ;231:116587. [DOI:10.1016/j.lfs.2019.116587]
29. Demirtas L, Guclu A, Erdur FM, Akbas EM, Ozcicek A, Onk D, et al. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus. The Indian journal of medical research. 2016 ;144(4):515.
30. Basha B, Samuel SM, Triggle CR, Ding H. Endothelial dysfunction in diabetes mellitus: possible involvement of endoplasmic reticulum stress?. Experimental diabetes research. 2012;2012. [DOI:10.1155/2012/481840]
31. Haas MJ, Raheja P, Jaimungal S, Sheikh-Ali M, Mooradian AD. Estrogen-dependent inhibition of dextrose-induced endoplasmic reticulum stress and superoxide generation in endothelial cells. Free Radical Biology and Medicine. 2012 ;52(11-12):2161-7. [DOI:10.1016/j.freeradbiomed.2012.04.009]
32. Su Q, Wang Y, Yang X, Li XD, Qi YF, He XJ, et al. Inhibition of Endoplasmic Reticulum Stress Apoptosis by Estrogen Protects Human Umbilical Vein Endothelial Cells Through the PI3 Kinase-Akt Signaling Pathway. Journal of Cellular Biochemistry. 2017 ;118(12):4568-74. [DOI:10.1002/jcb.26120]
33. Crider A, Nelson T, Davis T, Fagan K, Vaibhav K, Luo M,et al. Estrogen receptor β agonist attenuates endoplasmic reticulum stress-induced changes in social behavior and brain connectivity in mice. Molecular neurobiology. 2018 ;55(9):7606-18. [DOI:10.1007/s12035-018-0929-8]
34. Zhou Z, Ribas V, Rajbhandari P, Drew BG, Moore TM, Fluitt AH, et al. Estrogen receptor α protects pancreatic β-cells from apoptosis by preserving mitochondrial function and suppressing endoplasmic reticulum stress. Journal of Biological Chemistry. 2018 ;293(13):4735-51. [DOI:10.1074/jbc.M117.805069]
35. Han ZW, Chang YC, Zhou Y, Zhang H, Chen L, Zhang Y, et al GPER agonist G1 suppresses neuronal apoptosis mediated by endoplasmic reticulum stress after cerebral ischemia/reperfusion injury. Neural regeneration research. 2019 ;14(7):1221. [DOI:10.4103/1673-5374.251571]
36. Yaras N, Tuncay E, Purali N, Sahinoglu B, Vassort G, Turan B. Sex-related effects on diabetes-induced alterations in calcium release in the rat heart. American Journal of Physiology-Heart and Circulatory Physiology. 2007 ;293(6):H3584-92. [DOI:10.1152/ajpheart.00619.2007]
37. Bilginoglu A, Amber Cicek F, Ugur M, Gurdal H, Turan B. The role of gender differences in beta-adrenergic receptor responsiveness of diabetic rat heart. Molecular and cellular biochemistry. 2007 ;305(1):63-9. [DOI:10.1007/s11010-007-9528-0]
38. Zhong Y, Reiser PJ, Matlib MA. Gender differences in myosin heavy chain-β and phosphorylated phospholamban in diabetic rat hearts. American Journal of Physiology-Heart and Circulatory Physiology. 2003;285(6):H2688-93. [DOI:10.1152/ajpheart.00547.2003]
39. Lu B, Jiang YJ, Choy PC. 17-β estradiol enhances prostaglandin E2 production in human U937-derived macrophages. Molecular and cellular biochemistry. 2004;262(1):101-10. [DOI:10.1023/B:MCBI.0000038222.08915.84]
40. Thor D, Zhang R, Anderson L, Bose DD, Dubé GP, Rahimian R. Effects of 17 β-estradiol on lipopolysacharride-induced intracellular adhesion molecule-1 mRNA expression and Ca2+ homeostasis alteration in human endothelial cells. Vascular pharmacology. 2010 ;53(5-6):230-8. [DOI:10.1016/j.vph.2010.09.001]
41. Shahbazian M, Jafarynezhad F, Yadeghari M, Farhadi Z, Samani SL, Esmailidehaj M, et al. The effects of G protein-coupled receptor 30 (GPR30) on cardiac glucose metabolism in diabetic ovariectomized female rats. Journal of Basic and Clinical Physiology and Pharmacology. 2022 . [DOI:10.1515/jbcpp-2021-0374]
42. Lopaschuk GD. Metabolic abnormalities in the diabetic heart. Heart failure reviews. 2002 ;7(2):149-59. [DOI:10.1023/A:1015328625394]
43. Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2005 ;1734(2):112-26. [DOI:10.1016/j.bbalip.2005.03.005]
44. Devanathan S, Whitehead T, Schweitzer GG, Fettig N, Kovacs A, Korach KS, et al. An animal model with a cardiomyocyte-specific deletion of estrogen receptor alpha: functional, metabolic, and differential network analysis. PloS one. 2014 ;9(7):e101900. [DOI:10.1371/journal.pone.0101900]
45. Ramjiawan A, Bagchi RA, Albak L, Czubryt MP. Mechanism of cardiomyocyte PGC-1α gene regulation by ERRα. Biochemistry and Cell Biology. 2013;91(3):148-54. [DOI:10.1139/bcb-2012-0080]
46. Hsieh YC, Yu HP, Suzuki T, Choudhry MA, Schwacha MG, Bland KI, et al. Upregulation of mitochondrial respiratory complex IV by estrogen receptor-β is critical for inhibiting mitochondrial apoptotic signaling and restoring cardiac functions following trauma-hemorrhage. Journal of molecular and cellular cardiology. 2006 ;41(3):511-21. [DOI:10.1016/j.yjmcc.2006.06.001]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 CC BY-NC 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb