Volume 18, Issue 1 (2-2026)                   IJDO 2026, 18(1): 68-76 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Nosrati Andevari A. Dipeptidyl peptidase-4 Inhibitors in Type 2 Diabetes Mellitus: Mechanisms and Efficacy in Clinical Practice. IJDO 2026; 18 (1) :68-76
URL: http://ijdo.ssu.ac.ir/article-1-1019-en.html
Department of Clinical Biochemistry, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
Abstract:   (43 Views)
Type 2 diabetes mellitus (T2DM) is a long-term metabolic condition marked by reduced insulin release, decreased sensitivity to insulin, and hyperglucagonemia. In recent years, dipeptidyl peptidase-4 (DPP-4) inhibitors have become increasingly significant within the newer classes of antidiabetic medications, thanks to their distinct mechanism of action, advantageous safety profile, and the convenience of oral administration. In contrast to sulfonylureas, which have a significant risk of causing hypoglycemia, DPP-4 inhibitors offer insulin stimulation that depends on glucose levels, making them a safer choice for many patients. The aim of this study is to investigate the mechanisms and efficacy of DPP-4 inhibitors in clinical practice. The incretin effects of DPP-4 inhibitors are mediated by the hormone glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). GLP-1 and GIP stimulates insulin secretion. Furthermore, DPP-4 inhibitors hinder apoptosis in cells. For example, suppressing apoptosis in cardiac, renal, and pancreatic beta cells may be advantageous for enhancing insulin secretion and minimizing complications related to diabetes. DPP-4 inhibitors reduce inflammatory cytokines and chemokines by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In addition, they mitigate inflammation through modulation of immune cell activity and upregulation of anti-inflammatory chemokines and adipokines. Also, DPP-4 inhibitors have antioxidant roles, such as improving antioxidant factors and downregulating oxidant agents. Considering that T2DM is characterized as an inflammatory disease, DPP-4 inhibitors elevate insulin secretion and sensitivity, improve glycemic indices, and mitigate diabetic complications through incretin, anti-inflammatory, and antioxidant effects.
 
Full-Text [PDF 722 kb]   (7 Downloads)    
Type of Study: Research | Subject: Special
Received: 2025/10/9 | Accepted: 2025/12/10 | Published: 2026/02/21

References
1. Andevari AN, Moein S, Qujeq D, Moazezi Z, Hajian-Tilaki K. The Effects of Atorvastatin Consumption on Biochemical Variables in Patients with Type 2 Diabetes Mellitus and Pre-diabetes. International Journal of Medical Laboratory. 2022;9(3):198-203.
2. Andevari AN, Moein S, Qujeq D, Moazezi Z, Tilaki KH. Effects of atrovastatin on concentrations of 3-hydroxy-3-methylglutaryl-coenzyme A-reductase (HMG-CoA-R), proprotein convertase subtilisin/kexin type 9 (PCSK9) and sortilin in patients with type 2 diabetes mellitus and pre-diabetics. Journal of Nephropathology. 2020;10(1):e05. [DOI:10.34172/jnp.2021.05]
3. Andevari AN, Firoozjaee AH, Meftah N, Asciabari HA, Bahri F, Shahandashti NE, et al. The effects of atorvastatin consumption on blood levels of sortilin, glycemic, and lipid indices in type 2 diabetic patients: A randomized clinical trial. International Journal of Diabetes in Developing Countries. 2025:1-8. [DOI:10.1007/s13410-025-01557-z]
4. Florentin M, Kostapanos MS, Papazafiropoulou AK. Role of dipeptidyl peptidase 4 inhibitors in the new era of antidiabetic treatment. World Journal of Diabetes. 2022;13(2):85. [DOI:10.4239/wjd.v13.i2.85]
5. Jonik S, Marchel M, Grabowski M, Opolski G, Mazurek T. Gastrointestinal Incretins-Glucose-Dependent Insulinotropic Polypeptide (GIP) and Glucagon-like Peptide-1 (GLP-1) beyond Pleiotropic Physiological Effects Are Involved in Pathophysiology of Atherosclerosis and Coronary Artery Disease-State of the Art. Biology. 2022;11(2):288. [DOI:10.3390/biology11020288]
6. Dimakos J, Cui Y, Platt RW, Renoux C, Filion KB, Douros A. Concomitant use of sulfonylureas and β-blockers and the risk of severe hypoglycemia among patients with type 2 diabetes: a population-based cohort study. Diabetes Care. 2023;46(2):377-83. [DOI:10.2337/dc22-1584]
7. Dass B. Efficacy and Safety of Dpp-4 Inhibitor Use in the Hospital Setting. Master's Theses, Dissertations, Graduate Research and Major Papers Overview. 2023. [DOI:10.28971/532024DB66]
8. Rizal R. Dipeptidyl Peptidase-4 Inhibitors and Cardiovascular Side Effects. Pharmaceutical Journal of Indonesia. 2021;6(2):69-75. [DOI:10.21776/ub.pji.2021.006.02.1]
9. Holst JJ, Gasbjerg LS, Rosenkilde MM. The role of incretins on insulin function and glucose homeostasis. Endocrinology. 2021;162(7):bqab065. [DOI:10.1210/endocr/bqab065]
10. Kuhre RE, Deacon CF, Holst JJ, Petersen N. What is an L-cell and how do we study the secretory mechanisms of the L-cell?. Frontiers in Endocrinology. 2021;12:694284. [DOI:10.3389/fendo.2021.694284]
11. Gribble FM, Reimann F. Metabolic messengers: glucagon-like peptide 1. Nature metabolism. 2021;3(2):142-8. [DOI:10.1038/s42255-020-00327-x]
12. Alhamedi NM, Alassiri LA, AlMalki AM, Alkhathami GH, Alsulami DM, Alhassani RI, et al. Exploring Side Effects and Discontinuation Reasons of Glucagon-Like-Peptide-1 Agonist (Liraglutide, Semaglutide) for Weight Loss Among Patients at King Abdulaziz University, Jeddah in 2021 to 2023.
13. Harada N, Inagaki N. Regulation of food intake by intestinal hormones in brain. Journal of Diabetes Investigation. 2021;13(1):17. [DOI:10.1111/jdi.13708]
14. Welters A, Lammert E. Novel approaches to restore pancreatic beta-cell mass and function. From Obesity to Diabetes. 2021:439-65. [DOI:10.1007/164_2021_474]
15. Regmi A, Aihara E, Christe ME, Varga G, Beyer TP, Ruan X, et al. Tirzepatide modulates the regulation of adipocyte nutrient metabolism through long-acting activation of the GIP receptor. Cell metabolism. 2024;36(7):1534-49. [DOI:10.1016/j.cmet.2024.05.010]
16. Longo M, Mathiesen DS, Gasbjerg LS, Esposito K, Lund AB, Knop FK. The effects of GIP, GLP-1 and GLP-2 on markers of bone turnover: a review of the gut-bone axis. Journal of Endocrinology. 2025;265(2):e240231. [DOI:10.1530/JOE-24-0231]
17. Yang S, Cao J, Sun C, Yuan L. The Regulation Role of the Gut-Islets Axis in Diabetes. Diabetes, Metabolic Syndrome and Obesity. 2024:1415-23. [DOI:10.2147/DMSO.S455026]
18. Abd-Eldayem AM, Makram SM, Messiha BA, Abd-Elhafeez HH, Abdel-Reheim MA. Cyclosporine-induced kidney damage was halted by sitagliptin and hesperidin via increasing Nrf2 and suppressing TNF-α, NF-κB, and Bax. Scientific Reports. 2024;14(1):7434. [DOI:10.1038/s41598-024-57300-x]
19. Tomita T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosnian journal of basic medical sciences. 2016;16(3):162. [DOI:10.17305/bjbms.2016.919]
20. Su M, Zhao W, Xu S, Weng J. Resveratrol in treating diabetes and its cardiovascular complications: a review of its mechanisms of action. Antioxidants. 2022;11(6):1085. [DOI:10.3390/antiox11061085]
21. Su M, Zhao W, Xu S, Weng J. Resveratrol in treating diabetes and its cardiovascular complications: a review of its mechanisms of action. Antioxidants. 2022;11(6):1085. [DOI:10.3390/antiox11061085]
22. Panda SP. Role of DPP4 and DPP4i in Glucose Homeostasis and Cardiorenal Syndrome. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2023;23(2):179-87. [DOI:10.2174/1871530322666220531123116]
23. Mashayekhi M, Nian H, Mayfield D, Devin JK, Gamboa JL, Yu C, et al. Weight loss-independent effect of liraglutide on insulin sensitivity in individuals with obesity and prediabetes. Diabetes. 2024;73(1):38-50. [DOI:10.2337/db23-0356]
24. Rahim K, Shan M, Ul Haq I, Nawaz MN, Maryam S, Alturki MS, et al. Revolutionizing Treatment Strategies for Autoimmune and Inflammatory Disorders: The Impact of Dipeptidyl-Peptidase 4 Inhibitors. Journal of Inflammation Research. 2024:1897-917. [DOI:10.2147/JIR.S442106]
25. Palideh A, Vaghari-Tabari M, Andevari AN, Qujeq D, Asemi Z, Alemi F, et al. MicroRNAs and Periodontal Disease: Helpful Therapeutic Targets?. Advanced Pharmaceutical Bulletin. 2022;13(3):423. [DOI:10.34172/apb.2023.048]
26. Andevari AN, Qujeq D. Anti-inflammatory Mechanisms Beyond Cholesterol-Lowering Capabilities of Statins: Evidence from in vitro and in vivo Studies. Advances in Pharmacology and Therapeutics Journal. 2025;12(19):. [DOI:10.18502/aptj.v5i3.20517]
27. Meng Z, Wang K, Lan Q, Zhou T, Lin Y, Jiang Z, et al. Saxagliptin promotes random skin flap survival. International Immunopharmacology. 2023;120:110364. [DOI:10.1016/j.intimp.2023.110364]
28. Xie D, Wang Q, Huang W, Zhao L. Dipeptidyl-peptidase-4 inhibitors have anti-inflammatory effects in patients with type 2 diabetes. European Journal of Clinical Pharmacology. 2023;79(10):1291-301. [DOI:10.1007/s00228-023-03541-0]
29. Li W, Liu R, Li X, Tao B, Zhai N, Wang X, et al. Saxagliptin alters bile acid profiles and yields metabolic benefits in drug‐naive overweight or obese type 2 diabetes patient. Journal of Diabetes. 2019;11(12):982-92. [DOI:10.1111/1753-0407.12956]
30. Kitagawa N, Hamaguchi M, Majima S, Fukuda T, Kimura T, Hashimoto Y, et al. Dipeptidyl peptidase-4 inhibitors have adverse effects for the proliferation of human T cells. Journal of clinical biochemistry and nutrition. 2018;63(2):106-12. [DOI:10.3164/jcbn.17-64]
31. Wang H, Li Y, Zhang X, Xu Z, Zhou J, Shang W. DPP-4 inhibitor linagliptin ameliorates oxidized LDL-induced THP-1 macrophage foam cell formation and inflammation. Drug Design, Development and Therapy. 2020:3929-40. [DOI:10.2147/DDDT.S249846]
32. Mohammadi S, Al-Harrasi A. Macrophage modulation with dipeptidyl peptidase-4 inhibitors: A new frontier for treating diabetic cardiomyopathy?. World Journal of Diabetes. 2024;15(9):1847. [DOI:10.4239/wjd.v15.i9.1847]
33. Birnbaum Y, Tran D, Bajaj M, Ye Y. DPP-4 inhibition by linagliptin prevents cardiac dysfunction and inflammation by targeting the Nlrp3/ASC inflammasome. Basic research in cardiology. 2019;114(5):35. [DOI:10.1007/s00395-019-0743-0]
34. Brahadeeswaran S, Sivagurunathan N, Calivarathan L. Inflammasome signaling in the aging brain and age-related neurodegenerative diseases. Molecular neurobiology. 2022;59(4):2288-304. [DOI:10.1007/s12035-021-02683-5]
35. Ruytinx P, Proost P, Van Damme J, Struyf S. Chemokine-induced macrophage polarization in inflammatory conditions. Frontiers in immunology. 2018;9:1930. [DOI:10.3389/fimmu.2018.01930]
36. Liu F, Huang GD, Tang JZ, Peng YH. DPP4 inhibitors promote biological functions of human endothelial progenitor cells by targeting the SDF-1/CXCR4 signaling pathway. Archives of Biological Sciences. 2016;68(1):207-16. [DOI:10.2298/ABS150506143L]
37. Wiciński M, Górski K, Walczak M, Wódkiewicz E, Słupski M, Pawlak-Osińska K, et al. Neuroprotective properties of linagliptin: focus on biochemical mechanisms in cerebral ischemia, vascular dysfunction and certain neurodegenerative diseases. International Journal of Molecular Sciences. 2019;20(16):4052. [DOI:10.3390/ijms20164052]
38. Meng J, Zhang W, Wang C, Xiong S, Wang Q, Li H, et al. The dipeptidyl peptidase (DPP)-4 inhibitor trelagliptin inhibits IL-1β-induced endothelial inflammation and monocytes attachment. International immunopharmacology. 2020;89:106996. [DOI:10.1016/j.intimp.2020.106996]
39. Brandes J, Zobel I, Rohmann N, Schlicht K, Geisler C, Hartmann K, et al. Dipeptidylpeptidase (DPP)-4 inhibitor therapy increases circulating levels of anti-inflammatory soluble frizzle receptor protein (sFRP)-5 which is decreased in severe COVID-19 disease. Scientific reports. 2022;12(1):14935. [DOI:10.1038/s41598-022-18354-x]
40. Ramos H, Bogdanov P, Huerta J, Deàs-Just A, Hernández C, Simó R. Antioxidant effects of DPP-4 inhibitors in early stages of experimental diabetic retinopathy. Antioxidants. 2022;11(7):1418. [DOI:10.3390/antiox11071418]
41. Ngo V, Duennwald ML. Nrf2 and oxidative stress: a general overview of mechanisms and implications in human disease. Antioxidants. 2022;11(12):2345. [DOI:10.3390/antiox11122345]
42. Almarzouq D, Al-Maghrebi M. NADPH oxidase-mediated testicular oxidative imbalance regulates the TXNIP/NLRP3 inflammasome axis activation after ischemia reperfusion injury. Antioxidants. 2023;12(1):145. [DOI:10.3390/antiox12010145]
43. Andevari AN, Moein S, Qujeq D, Moazezi Z, Tilaki KH. The effect of atorvastatin on the concentrations of methylglyoxal, glyoxalase 1, and aldo-keto reductase family 1 member B10 in patients with type 2 diabetes mellitus and prediabetes. International Journal of Diabetes in Developing Countries. 2024;44(2):400-8. [DOI:10.1007/s13410-023-01249-6]
44. Xu T, Lin K, Cao M, Miao X, Guo H, Rui D,et al. Patterns of global burden of 13 diseases attributable to lead exposure, 1990-2019. BMC Public Health. 2023;23(1):1121. [DOI:10.1186/s12889-023-15874-7]
45. Fontes MT, Arruda-Junior DF, Dos Santos DS, Ribeiro-Silva JC, Antônio EL, Tucci PF, et al. Dipeptidyl peptidase 4 inhibition rescues PKA-eNOS signaling and suppresses aortic hypercontractility in male rats with heart failure. Life Sciences. 2023;323:121648. [DOI:10.1016/j.lfs.2023.121648]
46. Zamani B, Tabatabizadeh SM, Gilasi H, Yazdani S. Effects of pioglitazone and linagliptin on glycemic control, lipid profile and hs-CRP in metformin-treated patients with type 2 diabetes: a comparative study. Hormone Molecular Biology and Clinical Investigation. 2024;44(4):385-91. [DOI:10.1515/hmbci-2022-0070]
47. Nagao M, Sasaki J, Sugihara H, Tanimura-Inagaki K, Harada T, Sakuma I, et al. Efficacy and safety of sitagliptin treatment in older adults with moderately controlled type 2 diabetes: the STREAM study. Scientific reports. 2023;13(1):134. [DOI:10.1038/s41598-022-27301-9]
48. Mohamed AS, Ahmad HM, Sharawy MA, Kamel FM. The effect of vildagliptin versus metformin on hepatic steatosis in type 2 diabetic patients: a randomized controlled trial. BMC Pharmacology and Toxicology. 2024;25(1):94. https://doi.org/10.1186/s40360-024-00818-7 [DOI:10.1186/s40360-025-00924-0]
49. DeFronzo RA, Lewin A, Patel S, Liu D, Kaste R, Woerle HJ, et al. Combination of empagliflozin and linagliptin as second-line therapy in subjects with type 2 diabetes inadequately controlled on metformin. Diabetes care. 2015;38(3):384-93. [DOI:10.2337/dc14-2364]
50. Sahay RK, Giri R, Shembalkar JV, Gupta SK, Mohan B, Kurmi P, et al. Fixed-dose combination of dapagliflozin+ sitagliptin+ metformin in patients with type 2 diabetes poorly controlled with metformin: phase 3, randomized comparison with dual combinations. Advances in Therapy. 2023;40(7):3227-46. [DOI:10.1007/s12325-023-02523-z]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2026 CC BY 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb