Volume 15, Issue 2 (volume 15, number 2 2023)                   IJDO 2023, 15(2): 93-101 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Delbari R, Fathi R, Safarzade A, Nasiri K. Investigating the Levels of Liver Lipogenic and Lipolytic Enzymes in Rat with High-Fat Diet and Sucrose Solution Underwent Progressive Resistance Training. IJDO 2023; 15 (2) :93-101
URL: http://ijdo.ssu.ac.ir/article-1-792-en.html
Professor of Exercise Physiology, Department of Exercise Physiology, Faculty of Sports Sciences, University of Mazandaran, Babolsar, Iran. Athletic Performance and Health Research Center, University of Mazandaran, Babolsar, Iran.
Abstract:   (181 Views)
Objective: Consuming too much fat or carbohydrates stimulates lipogenesis and excess fat is stored in non-fat tissues, including the liver, and manifests as obesity and fatty liver disease. This study aimed to investigate the effect of eight weeks of progressive resistance training (PRT) on the liver levels of some enzymes affecting lipid metabolism in rats fed a high-fat diet and sucrose solution.
Materials and Methods: Twenty-four male wistar rats with 5 weeks of age were randomly divided into two groups: standard diet (SD) (n=8) and high-fat diet and sucrose solution (HFDS) (n=16). Twelve weeks later, HFDS group was divided into two groups: sedentary (HS) and PRT (HPRT). The PRT program was implemented 3 days a week for 8 weeks. Gene expression of AMPKα1, SCD-1, ATGL and FASN enzymes affecting lipid metabolism in liver tissue and its fat content were investigated.
Results: HFDS significantly increased the body weight (P: 0.001) and significantly decreased the liver expression of ATGL and FASN (P: 0.001, P: 0.011). Eight weeks of PRT did not show a significant difference in the expression of AMPKα1, SCD-1, ATGL and FASN genes. Rats fed HFDS had considerably higher levels of triglyceride (TG) and total cholesterol (TC) in their liver tissue (P: 0.004, P: 0.001) and PRT did not affect them (P: 0.959, P: 0.809 respectively).
Conclusion: It seems that eight weeks of PRT will not change liver lipid metabolism enzymes. Therefore, modifying the diet and changing it, will probably show different results after PRT.
 
Keywords: Liver, Enzymes, Exercise, Diet
Full-Text [PDF 576 kb]   (97 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/01/15 | Accepted: 2023/04/2 | Published: 2023/06/20

References
1. Nguyen P, Leray V, Diez M, Serisier S, Bloc'h JL, Siliart B, et al. Liver lipid metabolism. Journal of animal physiology and animal nutrition. 2008;92(3):272-83. [DOI:10.1111/j.1439-0396.2007.00752.x]
2. Tao L, Guo X, Xu M, Wang Y, Xie W, Chen H, et al. Dexmedetomidine ameliorates high‐fat diet‐induced nonalcoholic fatty liver disease by targeting SCD1 in obesity mice. Pharmacology Research & Perspectives. 2021;9(1):e00700. [DOI:10.1002/prp2.700]
3. Dobrzyn P, Jazurek M, Dobrzyn A. Stearoyl-CoA desaturase and insulin signaling-What is the molecular switch?. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2010;1797(6-7):1189-94. [DOI:10.1016/j.bbabio.2010.02.007]
4. Safarzade A, Safarpour H. Enhancement of Serum Myonectin Levels by Progressive Resistance Training in Rats Fed with High-Fat Diet and Sucrose Solution. Zahedan Journal of Research in Medical Sciences. 2021;23(4). [DOI:10.5812/zjrms.108209]
5. van der Windt DJ, Sud V, Zhang H, Tsung A, Huang H. The effects of physical exercise on fatty liver disease. Gene expression. 2018;18(2):89. [DOI:10.3727/105221617X15124844266408]
6. Moosavi-Sohroforouzani A, Ganbarzadeh M. Reviewing the physiological effects of aerobic and resistance training on insulin resistance and some biomarkers in non-alcoholic fatty liver disease. KAUMS Journal (FEYZ). 2016 Aug 10;20(3):282-96.(in Persian)
7. Mohammadzadeh F, Hosseini V, Alihemmati A, Shaaker M, Mosayyebi G, Darabi M, et al. The role of stearoyl-coenzyme a desaturase 1 in liver development, function, and pathogenesis. Journal of Renal and Hepatic Disorders. 2019;3(1):15-22.(in Persian) [DOI:10.15586/jrenhep.2019.49]
8. Piccinin E, Cariello M, De Santis S, Ducheix S, Sabbà C, Ntambi JM, et al. Role of oleic acid in the gut-liver axis: from diet to the regulation of its synthesis via stearoyl-CoA desaturase 1 (SCD1). Nutrients. 2019;11(10):2283. [DOI:10.3390/nu11102283]
9. Dziewulska A, Dobosz AM, Dobrzyn A, Smolinska A, Kolczynska K, Ntambi JM, et al. SCD1 regulates the AMPK/SIRT1 pathway and histone acetylation through changes in adenine nucleotide metabolism in skeletal muscle. Journal of cellular physiology. 2020;235(2):1129-40. [DOI:10.1002/jcp.29026]
10. De la Cruz-Color L, Hernández-Nazará ZH, Maldonado-González M, Navarro-Muñíz E, Domínguez-Rosales JA, Torres-Baranda JR, et al. Association of the PNPLA2, SCD1 and leptin expression with fat distribution in liver and adipose tissue from obese subjects. Experimental and Clinical Endocrinology & Diabetes. 2020;128(11):715-22. [DOI:10.1055/a-0829-6324]
11. Saponaro C, Gaggini M, Carli F, Gastaldelli A. The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients. 2015;7(11):9453-74. [DOI:10.3390/nu7115475]
12. Sathyanarayan A, Mashek MT, Mashek DG. ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell reports. 2017;19(1):1-9. [DOI:10.1016/j.celrep.2017.03.026]
13. Kienesberger PC, Lee D, Pulinilkunnil T, Brenner DS, Cai L, Magnes C, et al. Adipose triglyceride lipase deficiency causes tissue-specific changes in insulin signaling. Journal of Biological Chemistry. 2009;284(44):30218-29. [DOI:10.1074/jbc.M109.047787]
14. Schreiber R, Xie H, Schweiger M. Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2019;1864(6):880-99. [DOI:10.1016/j.bbalip.2018.10.008]
15. Turpin SM, Hoy AJ, Brown RD, Garcia Rudaz C, Honeyman J, Matzaris M, Watt MJ. Adipose triacylglycerol lipase is a major regulator of hepatic lipid metabolism but not insulin sensitivity in mice. Diabetologia. 2011;54:146-56. [DOI:10.1007/s00125-010-1895-5]
16. Che L, Paliogiannis P, Cigliano A, Pilo MG, Chen X, Calvisi DF. Pathogenetic, prognostic, and therapeutic role of fatty acid synthase in human hepatocellular carcinoma. Frontiers in oncology. 2019;9:1412. [DOI:10.3389/fonc.2019.01412]
17. Sun B, Zhou J, Gao Y, He F, Xu H, Chen X, Zhang W, Chen L. Fas-associated factor 1 promotes hepatic insulin resistance via JNK signaling pathway. Oxidative medicine and cellular longevity. 2021;2021. [DOI:10.1155/2021/3756925]
18. Rector RS, Thyfault JP, Morris RT, Laye MJ, Borengasser SJ, Booth FW, et al. Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2008;294(3):G619-26. [DOI:10.1152/ajpgi.00428.2007]
19. Domingos MM, Rodrigues MF, Stotzer US, Bertucci DR, Souza MV, Marine DA, et al. Resistance training restores the gene expression of molecules related to fat oxidation and lipogenesis in the liver of ovariectomized rats. European journal of applied physiology. 2012;112:1437-44. [DOI:10.1007/s00421-011-2098-6]
20. Zacharewicz E, Hesselink MK, Schrauwen P. Exercise counteracts lipotoxicity by improving lipid turnover and lipid droplet quality. Journal of Internal Medicine. 2018;284(5):505-18. [DOI:10.1111/joim.12729]
21. Huijsman E, van de Par C, Economou C, van der Poel C, Lynch GS, Schoiswohl G, et al. Adipose triacylglycerol lipase deletion alters whole body energy metabolism and impairs exercise performance in mice. American Journal of Physiology-Endocrinology and Metabolism. 2009;297(2):E505-13. [DOI:10.1152/ajpendo.00190.2009]
22. Hallsworth K, Fattakhova G, Hollingsworth KG, Thoma C, Moore S, Taylor R, et al. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut. 2011;60(9):1278-83. [DOI:10.1136/gut.2011.242073]
23. Ehsanifard Z, Mir-Mohammadrezaei F, Safarzadeh A, Ghobad-Nejhad M. Aqueous extract of Inocutis levis improves insulin resistance and glucose tolerance in high sucrose-fed Wistar rats. Journal of Herbmed Pharmacology. 2017;6(4):160-4.
24. Romero-Sarmiento Y, Soto-Rodríguez I, Arzaba-Villalba A, García HS, Alexander-Aguilera A. Effects of conjugated linoleic acid on oxidative stress in rats with sucrose-induced non-alcoholic fatty liver disease. Journal of Functional Foods. 2012;4(1):219-25. [DOI:10.1016/j.jff.2011.10.009]
25. Machrina Y, Pane YS, Lindarto D. The expression of liver metabolic enzymes ampkα1, ampkα2, and pgc-1α due to exercise in Type-2 diabetes mellitus rat model. Open Access Macedonian Journal of Medical Sciences. 2020;8(A):629-32. [DOI:10.3889/oamjms.2020.4550]
26. Morcillo S, Martín-Núñez GM, García-Serrano S, Gutierrez-Repiso C, Rodriguez-Pacheco F, Valdes S, et al. Changes in SCD gene DNA methylation after bariatric surgery in morbidly obese patients are associated with free fatty acids. Scientific reports. 2017;7(1):1-8. [DOI:10.1038/srep46292]
27. Zhang W, Zhang X, Wang H, Guo X, Li H, Wang Y, et al. AMP-activated protein kinase α1 protects against diet-induced insulin resistance and obesity. Diabetes 2012; 61: 3114-3125. [DOI:10.2337/db11-1373]
28. Minuzzi LG, Kuga GK, Breda L, Gaspar RC, Muñoz VR, Pereira RM, et al. Short-term resistance training increases APPL1 content in the liver and the insulin sensitivity of mice fed a long-term high-fat diet. Experimental and Clinical Endocrinology & Diabetes. 2020;128(01):30-7. [DOI:10.1055/a-0885-9872]
29. Nikroo H, Hosseini SR, Fathi M, Sardar MA, Khazaei M. The effect of aerobic, resistance, and combined training on PPAR-α, SIRT1 gene expression, and insulin resistance in high-fat diet-induced NAFLD male rats. Physiology & Behavior. 2020;227:113149. [DOI:10.1016/j.physbeh.2020.113149]
30. Fernandez-Real JM, Menendez JA, Moreno-Navarrete JM, Blüher M, Vazquez-Martin A, Vázquez MJ, et al. Extracellular fatty acid synthase: a possible surrogate biomarker of insulin resistance. Diabetes. 2010;59(6):1506-11. [DOI:10.2337/db09-1756]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb