Volume 16, Issue 2 (6-2024)                   IJDO 2024, 16(2): 78-89 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Gholinataj Jelodar M, Mirzaei S, Haji Maghsoudi M. Predictors of Mortality among Intensive Care Unit (ICU) Hospitalized Diabetic Patients with COVID-19. IJDO 2024; 16 (2) :78-89
URL: http://ijdo.ssu.ac.ir/article-1-871-en.html
Clinical Research Development Center, Shahid Rahnemoon Hospital, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Department of Health in Emergencies and Disasters, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Abstract:   (316 Views)
Objective: Diabetic patients with COVID-19 are at the higher risk of clinical complications and intensive care unit )ICU( admission. There is limited information available on the risk factors of mortality in diabetic patients with COVID-19 admitted to the ICUs. The aim of this study was identifying the mortality risk factors in diabetic patients with COVID-19 who are admitted to the ICU.
Materials and Methods: In this study, we conducted a descriptive-analytical observational analysis on 391 patients admitted to the ICU for 18 months. We assessed the demographic, clinical, pharmaceutical, laboratory and imaging data of diabetic patients and statistically analyzed them to identify mortality risk factors.
Results: The study found 156 (39.89%) diabetic out of 391 patients. The group of diabetic patients had significantly higher rates of endotracheal intubation (P< 0.001), mortality (P< 0.001), and complications during hospitalization due to COVID-19, including secondary bacterial infections (P =  0.005), venous thrombosis (P =  0.008), and gastrointestinal bleeding (P =  0.011), compared to the nondiabetic patient.
Conclusion: Patients with diabetes who also have COVID-19 tend to experience more severe clinical outcomes and a higher mortality rate when admitted to the intensive care unit. The likelihood of mortality in these patients is closely associated with factors such as stroke occurrence, oxygenation levels, and the presence of secondary infections at the time of admission.
 
Full-Text [PDF 674 kb]   (97 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/12/25 | Accepted: 2024/03/26 | Published: 2024/06/21

References
1. Smati S, Tramunt B, Wargny M, Gourdy P, Hadjadj S, Cariou B. COVID-19 and Diabetes Outcomes: Rationale for and Updates from the CORONADO Study. Current diabetes reports. 2022;22(2):53-63. [DOI:10.1007/s11892-022-01452-5]
2. Jawad Hashim M, Alsuwaidi AR, Khan G. Population risk factors for COVID-19 mortality in 93 countries. Journal of epidemiology and global health. 2020;10(3):204-8. [DOI:10.2991/jegh.k.200721.001]
3. World Health Organization. WHO Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. 2020.
4. Serafim RB, Póvoa P, Souza-Dantas V, Kalil AC, Salluh JI. Clinical course and outcomes of critically ill patients with COVID-19 infection: a systematic review. Clinical Microbiology and Infection. 2021;27(1):47-54. [DOI:10.1016/j.cmi.2020.10.017]
5. Holman N, Knighton P, Kar P, O'Keefe J, Curley M, Weaver A, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: a population-based cohort study. The lancet Diabetes & endocrinology. 2020;8(10):823-33. [DOI:10.1016/S2213-8587(20)30271-0]
6. Rawshani A, Kjölhede EA, Rawshani A, Sattar N, Eeg-Olofsson K, Adiels M, et al. Severe COVID-19 in people with type 1 and type 2 diabetes in Sweden: A nationwide retrospective cohort study. The Lancet Regional Health-Europe. 2021;4: 100105. [DOI:10.1016/j.lanepe.2021.100105]
7. Hill MA, Mantzoros C, Sowers JR. Commentary: COVID-19 in patients with diabetes. Metabolism. 2020;107:154217. [DOI:10.1016/j.metabol.2020.154217]
8. Klonoff DC, Umpierrez GE. COVID-19 in patients with diabetes: risk factors that increase morbidity. Metabolism. 2020;108:154224. [DOI:10.1016/j.metabol.2020.154224]
9. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. Jama Network Open. 2020;324(8):782-93. [DOI:10.1001/jama.2020.12839]
10. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497-506. [DOI:10.1016/S0140-6736(20)30183-5]
11. Biswas M, Rahaman S, Biswas TK, Haque Z, Ibrahim B. Association of sex, age, and comorbidities with mortality in COVID-19 patients: a systematic review and meta-analysis. Intervirology. 2021;64(1):36-47. [DOI:10.1159/000512592]
12. Moazzami B, Chaichian S, Kasaeian A, Djalalinia S, Akhlaghdoust M, Eslami M, Broumand B. Metabolic risk factors and risk of Covid-19: A systematic review and meta-analysis. PloS one. 2020;15(12):e0243600. [DOI:10.1371/journal.pone.0243600]
13. Petrovic V, Radenkovic D, Radenkovic G, Djordjevic V, Banach M. Pathophysiology of cardiovascular complications in COVID-19. Frontiers in physiology. 2020;11:575600. [DOI:10.3389/fphys.2020.575600]
14. Khunti K, Valabhji J, Misra S. Diabetes and the COVID-19 pandemic. Diabetologia. 2023;66(2):255-66. [DOI:10.1007/s00125-022-05833-z]
15. Singh AK, Gillies CL, Singh R, Singh A, Chudasama Y, Coles B, et al. Prevalence of co‐morbidities and their association with mortality in patients with COVID‐19: a systematic review and meta‐analysis. Diabetes, Obesity and Metabolism. 2020 ;22(10):1915-24. [DOI:10.1111/dom.14124]
16. Williamson EJ, Walker AJ, Bhaskaran K, Bacon S, Bates C, Morton CE, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020;584(7821):430-6. [DOI:10.1038/s41586-020-2521-4]
17. Yang X, Yu Y, Xu J, Shu H, Liu H, Wu Y, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The lancet respiratory medicine. 2020;8(5):475-81. [DOI:10.1016/S2213-2600(20)30079-5]
18. Barron E, Bakhai C, Kar P, Weaver A, Bradley D, Ismail H, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study. The lancet Diabetes & endocrinology. 2020;8(10):813-22. [DOI:10.1016/S2213-8587(20)30272-2]
19. Vahedian-Azimi A, Mohammadi SM, Beni FH, Banach M, Guest PC, Jamialahmadi T, et al. Improved COVID-19 ICU admission and mortality outcomes following treatment with statins: a systematic review and meta-analysis. Archives of Medical Science: AMS. 2021;17(3):579. [DOI:10.5114/aoms/132950]
20. Zhang Y, Cui Y, Shen M, Zhang J, Liu B, Dai M, et al. Association of diabetes mellitus with disease severity and prognosis in COVID-19: a retrospective cohort study. Diabetes research and clinical practice. 2020;165:108227. [DOI:10.1016/j.diabres.2020.108227]
21. Mirzaei M, Rahmaninan M, Mirzaei M, Nadjarzadeh A, Dehghani Tafti AA. Epidemiology of diabetes mellitus, pre-diabetes, undiagnosed and uncontrolled diabetes in Central Iran: results from Yazd health study. BMC public health. 2020;20(1):166. [DOI:10.1186/s12889-020-8267-y]
22. de Almeida-Pititto B, Dualib PM, Zajdenverg L, Dantas JR, de Souza FD, Rodacki M, et al. Severity and mortality of COVID 19 in patients with diabetes, hypertension and cardiovascular disease: a meta-analysis. Diabetology & metabolic syndrome. 2020;12:1-2. [DOI:10.1186/s13098-020-00586-4]
23. Gaba U, Altamish M, Azharuddin M, Adil M, Ghosh P, Gyawali B, et al. Risk factors and outcomes associated with diabetes mellitus in COVID-19 patients: a meta-analytic synthesis of observational studies. Journal of Diabetes & Metabolic Disorders. 2022;21(2):1395-405. [DOI:10.1007/s40200-022-01072-6]
24. Gholinataj Jelodar M, Rafieian S, Allah Dini A, Khalaj F, Zare S, Dehghanpour H, et al. Analyzing Trends in Demographic, Laboratory, Imaging, and Clinical Outcomes of ICU-Hospitalized COVID-19 Patients. Canadian Journal of Infectious Diseases and Medical Microbiology. 2023;2023. [DOI:10.1155/2023/3081660]
25. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, Zheng D, et al. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology. 2020;295(3):715-21. [DOI:10.1148/radiol.2020200370]
26. Dennis JM, Mateen BA, Sonabend R, Thomas NJ, Patel KA, Hattersley AT, Denaxas S, et al. Type 2 diabetes and COVID-19-related mortality in the critical care setting: a national cohort study in England, March-July 2020. Diabetes care. 2021;44(1):50-7. [DOI:10.2337/dc20-1444]
27. Gao YD, Ding M, Dong X, Zhang JJ, Kursat Azkur A, Azkur D, et al. Risk factors for severe and critically ill COVID 19 patients: a review. Allergy. 2021;76(2):428-55. [DOI:10.1111/all.14657]
28. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. Current opinion in immunology. 2010;22(4):507-13. [DOI:10.1016/j.coi.2010.05.003]
29. Lee KA, Flores RR, Jang IH, Saathoff A, Robbins PD. Immune senescence, immunosenescence and aging. Frontiers in Aging. 2022;3:900028. [DOI:10.3389/fragi.2022.900028]
30. Tian J, Yuan X, Xiao J, Zhong Q, Yang C, Liu B, et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. The Lancet Oncology. 2020;21(7):893-903. [DOI:10.1016/S1470-2045(20)30309-0]
31. Wang L, Sun Y, Yuan Y, Mei Q, Yuan X. Clinical challenges in cancer patients with COVID-19: Aging, immunosuppression, and comorbidities. Aging (Albany NY). 2020;12(23):24462. [DOI:10.18632/aging.104205]
32. Kuderer NM, Choueiri TK, Shah DP, Shyr Y, Rubinstein SM, Rivera DR, et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. The Lancet. 2020;395(10241):1907-18. [DOI:10.1016/S0140-6736(20)31187-9]
33. Yang K, Sheng Y, Huang C, Jin Y, Xiong N, Jiang K, Lu H, et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. The Lancet Oncology. 2020;21(7):904-13. [DOI:10.1016/S1470-2045(20)30310-7]
34. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine. 2020;382(18):1708-20. [DOI:10.1056/NEJMoa2002032]
35. Zhou Q, Gao Y, Wang X, Liu R, Du P, Wang X, et al. Nosocomial infections among patients with COVID-19, SARS and MERS: a rapid review and meta-analysis. Annals of Translational Medicine. 2020;8(10):629. [DOI:10.21037/atm-20-3324]
36. Ghoneim HE, Thomas PG, McCullers JA. Depletion of alveolar macrophages during influenza infection facilitates bacterial superinfections. The Journal of Immunology. 2013;191(3):1250-9. [DOI:10.4049/jimmunol.1300014]
37. Zhang H, Zhang Y, Wu J, Li Y, Zhou X, Li X, et al. Risks and features of secondary infections in severe and critical ill COVID-19 patients. Emerging microbes & infections. 2020;9(1):1958-64. [DOI:10.1080/22221751.2020.1812437]
38. Van Reeth K, Nauwynck H, Pensaert M. A potential role for tumour necrosis factor-α in synergy between porcine respiratory coronavirus and bacterial lipopolysaccharide in the induction of respiratory disease in pigs. Journal of Medical Microbiology. 2000;49(7):613-20. [DOI:10.1099/0022-1317-49-7-613]
39. Opriessnig T, Giménez-Lirola LG, Halbur PG. Polymicrobial respiratory disease in pigs. Animal Health Research Reviews. 2011;12(2):133-48. [DOI:10.1017/S1466252311000120]
40. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & growth factor reviews. 2020;53:25-32. [DOI:10.1016/j.cytogfr.2020.05.003]
41. Baindara P, Chakraborty R, Holliday ZM, Mandal SM, Schrum AG. Oral probiotics in coronavirus disease 2019: Connecting the gut-lung axis to viral pathogenesis, inflammation, secondary infection and clinical trials. New microbes and new infections. 2021;40:100837. [DOI:10.1016/j.nmni.2021.100837]
42. Al‐Emran HM, Rahman S, Hasan MS, Ul Alam R, Islam OK, Anwar A, et al. Microbiome analysis revealing microbial interactions and secondary bacterial infections in COVID‐19 patients comorbidly affected by Type 2 diabetes. Journal of Medical Virology. 2023;95(1):e28234. [DOI:10.1002/jmv.28234]
43. Zuo T, Liu Q, Zhang F, Lui GC, Tso EY, Yeoh YK, et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021;70(2):276-84. [DOI:10.1136/gutjnl-2020-322294]
44. Deitelzweig S, Luo X, Nguyen JL, Malhotra D, Emir B, Russ C, et al. Thrombotic and bleeding events, mortality, and anticoagulant use among 546,656 hospitalized patients with COVID-19 in the United States: a retrospective cohort study. Journal of Thrombosis and Thrombolysis. 2022;53(4):766-76. [DOI:10.1007/s11239-022-02644-2]
45. Xiao D, Tang F, Chen L, Gao H, Li X. Cumulative evidence for the association of thrombosis and the prognosis of COVID-19: systematic review and meta-analysis. Frontiers in cardiovascular medicine. 2022;8:819318. [DOI:10.3389/fcvm.2021.819318]
46. Calvisi SL, Ramirez GA, Scavini M, Da Prat V, Di Lucca G, Laurenzi A, et al. Thromboembolism risk among patients with diabetes/stress hyperglycemia and COVID-19. Metabolism. 2021;123:154845. [DOI:10.1016/j.metabol.2021.154845]
47. Zhu Z, Zeng Q, Liu Q, Wen J, Chen G. Association of glucose-lowering drugs with outcomes in patients with diabetes before hospitalization for COVID-19: a systematic review and network meta-analysis. JAMA Network Open. 2022;5(12):e2244652. [DOI:10.1001/jamanetworkopen.2022.44652]
48. Amstutz A, Speich B, Mentré F, Rueegg CS, Belhadi D, Assoumou L, et al. Effects of remdesivir in patients hospitalised with COVID-19: a systematic review and individual patient data meta-analysis of randomised controlled trials. The Lancet Respiratory Medicine. 2023;11(5):453-64. [DOI:10.1016/S2213-2600(22)00528-8]
49. Nhean S, Varela ME, Nguyen YN, Juarez A, Huynh T, Udeh D, et al. COVID-19: a review of potential treatments (corticosteroids, remdesivir, tocilizumab, bamlanivimab/etesevimab, and casirivimab/imdevimab) and pharmacological considerations. Journal of pharmacy practice. 2023;36(2):407-17. [DOI:10.1177/08971900211048139]
50. Sardu C, D'Onofrio N, Balestrieri ML, Barbieri M, Rizzo MR, Messina V, et al. Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control?. Diabetes care. 2020;43(7):1408-15. [DOI:10.2337/dc20-0723]
51. Chaudhuri A, Umpierrez GE. Oxidative stress and inflammation in hyperglycemic crises and resolution with insulin: implications for the acute and chronic complications of hyperglycemia. Journal of Diabetes and its Complications. 2012;26(4):257. [DOI:10.1016/j.jdiacomp.2012.04.016]
52. Marfella R, Di Filippo C, Portoghese M, Ferraraccio F, Rizzo MR, Siniscalchi M, et al. Tight glycemic control reduces heart inflammation and remodeling during acute myocardial infarction in hyperglycemic patients. Journal of the American College of Cardiology. 2009;53(16):1425-36. [DOI:10.1016/j.jacc.2009.01.041]
53. Dombrowski NC, Karounos DG. Pathophysiology and management strategies for hyperglycemia for patients with acute illness during and following a hospital stay. Metabolism. 2013;62(3):326-36. [DOI:10.1016/j.metabol.2012.07.020]
54. Asperges E, Albi G, Zuccaro V, Sambo M, Pieri TC, Calia M, et al. Dynamic NLR and PLR in predicting Covid-19 severity: A retrospective cohort study. Infectious Diseases and Therapy. 2023;12(6):1625-40. [DOI:10.1007/s40121-023-00813-1]
55. Regolo M, Vaccaro M, Sorce A, Stancanelli B, Colaci M, Natoli G, et al. Neutrophil-to-lymphocyte ratio (NLR) is a promising predictor of mortality and admission to intensive care unit of COVID-19 patients. Journal of Clinical Medicine. 2022;11(8):2235. [DOI:10.3390/jcm11082235]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb