Volume 16, Issue 2 (volume 16, number 2 2024)                   IJDO 2024, 16(2): 127-137 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yahaya T, Obaroh I, Magaji U, Obadiah C, Anyebe D, Shemishere U. Genetic and Epigenetic Etiologies of Type 1 Diabetes Mellitus. IJDO 2024; 16 (2) :127-137
URL: http://ijdo.ssu.ac.ir/article-1-876-en.html
Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria.
Abstract:   (82 Views)
Numerous suspect genes associated with type 1 diabetes mellitus (T1DM) have been identified, suggesting a need to focus on the disease's causal genes and mechanisms. This necessitates an update to raise public awareness. This review articulates genes with mutations that predispose individuals to T1DM. We conducted a comprehensive search of academic databases, including Web of Science, Scopus, PubMed, and Google Scholar, for relevant materials. Available information indicates that at least 70 genes are suspected in the pathogenesis of T1DM. However, the most frequently implicated genes include human leukocyte antigen (HLA), insulin (INS), cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and protein tyrosine phosphatase non-receptor type 22 (PTPN22). Mutations or variants in these genes may lead to insulin insufficiency and, consequently, T1DM by tricking immune cells, such as T-cells and B-cells, into attacking self-antigens and triggering the autoimmunity of beta cells. Furthermore, this pathophysiology can be mediated through aberrant epigenetic modifications, including DNA methylation, histone post-translational modifications, and non-coding RNAs, in the mentioned genes. Some of these pathophysiologies are gene-specific and may have an epigenetic origin that is reversible. In the event of an epigenetic origin, a treatment for T1DM that addresses the causal genes or reverses epigenetic changes and their mechanisms could yield improved outcomes. Medical professionals are encouraged to design therapeutic regimens that specifically target the mentioned genes and address the identified epigenetic alterations in individuals expressing such etiologies.
Full-Text [PDF 466 kb]   (46 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/02/8 | Accepted: 2024/04/10 | Published: 2024/06/21

1. WHO (World Health Organization) (2024). Diabetes mellitus. https://www.who.int/health-topics/diabetes#tab=tab_1
2. Yahaya T, Salisu T. Genes predisposing to type1 diabetes mellitus and pathophysiology: a narrative review. Medical Journal of Indonesia. 2020; 29(1):100-9. [DOI:10.13181/mji.rev.203732]
3. Regulation of Blood Glucose. ATrain Education (2024). https://www.atrainceu.com/content/4-regulation-blood-glucose
4. Antar SA, Ashour NA, Sharaky M, Khattab M, Ashour NA, Zaid RT, et al. Diabetes mellitus: Classification, mediators, and complications; A gate to identify potential targets for the development of new effective treatments. Biomedicine & Pharmacotherapy. 2023;168:115734.
5. WHO (World Health Organization) (2024). Obesity and overweight. Available at https://www.who.int/ news-room/fact-sheets/detail/obesity-and-overweight
6. Redondo MJ, Libman I, Cheng P, Kollman C, Tosur M, Gal RL, et al. Racial/ethnic minority youth with recent-onset type 1 diabetes have poor prognostic factors. Diabetes Care. 2018;41(5):1017-24.
7. Chen Z, Wang J, Carru C, Coradduzza D, Li Z. The prevalence of depression among parents of children/adolescents with type 1 diabetes: A systematic review and meta-analysis. Frontiers in endocrinology. 2023;14:1095729.
8. Diabetes: An Overview. Cleveland Clinic. 2023. https://my.clevelandclinic.org/health/diseases/7104-diabetes
9. Over 9 Million People Living with Type 1 Diabetes. Health Action International. 2024.https://haiweb.org/over-9-million-people-living-with-type-1-diabetes/
10. Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Scientific Reports. 2020; 10 (1): 14790.
11. Secrest AM, Washington RE, Orchard TJ. Mortality in type 1 diabetes. Diabetes in America. 3rd edition. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases (US). 2018. Chapter 35.
12. Joish VN, Zhou FL, Preblick R, Lin D, Deshpande M, Verma S, et al. Estimation of annual health care costs for adults with type 1 diabetes in the United States. Journal of Managed Care & Specialty Pharmacy. 2020;26(3):311-8.
13. Kahanovitz L, Sluss PM, Russell SJ. Type 1 diabetes-a clinical perspective. Point of care. 2017;16(1):37-40.
14. Yahaya T, Obaroh OI, Oladele OE. The Roles of Microorganisms in the Pathogenesis and Prevalence of Diabetes: A Review. African Journal of Diabetes Medicine. 2017; 25(2):13-15.
15. Gale EA. The rise of childhood type 1 diabetes in the 20th century. Diabetes. 2002;51(12):3353-61.
16. Harjutsalo V, Sjöberg L, Tuomilehto J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. The Lancet. 2008;371(9626):1777-82.
17. Giwa AM, Ahmed R, Omidian Z, Majety N, Karakus KE, Omer SM, et al. Current understandings of the pathogenesis of type 1 diabetes: Genetics to environment. World journal of diabetes. 2020;11(1):13-25.
18. Karaoglan M, Eksi F. The coincidence of newly diagnosed type 1 diabetes mellitus with IgM antibody positivity to enteroviruses and respiratory tract viruses. Journal of Diabetes Research. 2018; 2018: 8475341.
19. Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. Diabetes: a 21st century challenge. The lancet Diabetes & endocrinology. 2014;2(1):56-64.
20. Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Current diabetes reports. 2011;11:533-42.
21. Havlíček J, Winternitz J, Roberts SC. Major histocompatibility complex-associated odour preferences and human mate choice: near and far horizons. Philosophical Transactions of the Royal Society B. 2020;375(1800):20190260.
22. Noble JA, Erlich HA. Genetics of type 1 diabetes. Cold Spring Harbor perspectives in medicine. 2012;2(1):a007732.
23. Human leukocyte antigen (HLA).Multiple Sclerosis Trust. 2020. https://mstrust.org.uk/a-z/human-leukocyte-antigen-hla
24. Baker PR. II, Eisenbarth GS Type 1 diabetes: Pathogenesis, prediction, and prevention. US Endocrinol. 2009; 5(1):79-84. http://doi.org/ 10.17925/USE.2009.05.1.79
25. Paschou SA, Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. On type 1 diabetes mellitus pathogenesis. Endocrine connections. 2018;7(1):R38-46.
26. Gillespie KM. Type 1 diabetes: pathogenesis and prevention. Canadian Medical Association Journal. 2006;175(2):165-70.
27. Eike MC, Olsson M, Undlien DE, Dahl-Jørgensen K, Joner G, Rønningen KS, et al. Genetic variants of the HLA-A, HLA-B and AIF1 loci show independent associations with type 1 diabetes in Norwegian families. Genes & Immunity. 2009;10(2):141-50.
28. Atkinson MA. The pathogenesis and natural history of type 1 diabetes. Cold Spring Harbor perspectives in medicine. 2012;2(11):a007641. https://doi.org/ 10.1101/cshperspect.a007641 [DOI:10.1101/cshperspect.a007641]
29. Syn NL, Teng MW, Mok TS, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. The Lancet Oncology. 2017;18(12):e731-41.
30. NCBI (National Center for Biotechnology Information). CTLA4 cytotoxic T-lymphocyte associated protein 4. 2022.https://www.ncbi.nlm. nih.gov/gene/1493
31. Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W, et al. Molecular basis of T cell inactivation by CTLA-4. Science. 1998;282(5397):2263-6.
32. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600-3.
33. Klocke K, Sakaguchi S, Holmdahl R, Wing K. Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proceedings of the National Academy of Sciences. 2016;113(17):E2383-92.
34. Kantarova D, Buc M. Genetic susceptibility to type 1 diabetes mellitus in humans. Physiological research. 2007;56(3):255-66.
35. Giza S, Goulas A, Gbandi E, Effraimidou S, Papadopoulou-Alataki E, Eboriadou M, et al. The role of PTPN22 C1858T gene polymorphism in diabetes mellitus type 1: first evaluation in Greek children and adolescents. BioMed Research International. 2013;2013; 721604.
36. Sharp RC, Abdulrahim M, Naser ES, Naser SA. Genetic variations of PTPN2 and PTPN22: role in the pathogenesis of type 1 diabetes and Crohn's disease. Frontiers in cellular and infection microbiology. 2015;5:95.
37. Menard L, Saadoun D, Isnardi I, Ng YS, Meyers G, Massad C, et al. The PTPN22 allele encoding an R620W variant interferes with the removal of developing autoreactive B cells in humans. The Journal of clinical investigation. 2011;121(9): 3635-44.
38. Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P, et al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nature genetics. 2005;37(12):1317-9.
39. Yahaya TO, Yusuf AB, Danjuma JK, Usman BM, Ishiaku YM. Mechanistic links between vitamin deficiencies and diabetes mellitus: a review. Egyptian Journal of Basic and Applied Sciences. 2021;8(1):189-202.
40. Tajudeen YO, Shemishere UB. Role of epigenetics in aetiology and therapies for Type 1 Diabetes Mellitus: A narrative. Journal of Health and Social Sciences. 2019;4(2):199-212.
41. Ahmed SA, Ansari SA, Mensah-Brown EP, Emerald BS. The role of DNA methylation in the pathogenesis of type 2 diabetes mellitus. Clinical epigenetics. 2020;12(1):104.
42. Parveen N, Dhawan S. DNA methylation patterning and the regulation of beta cell homeostasis. Frontiers in Endocrinology. 2021;12:651258.
43. Rui J, Deng S, Lebastchi J, Clark PL, Usmani-Brown S, Herold KC. Methylation of insulin DNA in response to proinflammatory cytokines during the progression of autoimmune diabetes in NOD mice. Diabetologia. 2016;59(5):1021-9.
44. Moin AS, Butler AE. Alterations in beta cell identity in type 1 and type 2 diabetes. Current diabetes reports. 2019;19: 83.
45. Bhasin M, Reinherz EL, Reche PA. Recognition and classification of histones using support vector machine. Journal of Computational Biology. 2006;13(1):102-12.
46. McGinty RK, Tan S. Nucleosome structure and function. Chemical reviews. 2015;115(6):2255-73.
47. Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications-cause and consequence of genome function. Nature Reviews Genetics. 2022;23(9):563-80.
48. Cruickshank MN, Besant P, Ulgiati D. The impact of histone post-translational modifications on developmental gene regulation. Amino acids. 2010;39:1087-105.
49. Yahaya T. Role of epigenetics in the pathogenesis and management of type 2 diabetes mellitus. Translation: The University of Toledo Journal of Medical Sciences. 2019;6:20-8.
50. Cerna M. Epigenetic regulation in etiology of type 1 diabetes mellitus. International journal of molecular sciences. 2019;21(1):36.
51. Miao F, Chen Z, Zhang L, Liu Z, Wu X, Yuan YC, et al. Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. Journal of Biological Chemistry. 2012;287(20):16335-45.
52. Wu H, Deng Y, Feng Y, Long D, Ma K, Wang X, et al. Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cellular & Molecular Immunology. 2018;15(7):676-84.
53. Reddy MA, Park JT, Natarajan R. Epigenetic modifications in the pathogenesis of diabetic nephropathy. InSeminars in nephrology. 2013;33(4): 341-53.
54. Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nature reviews Molecular cell biology. 2009;10(2):116-25.
55. Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World journal of biological chemistry. 2017;8(1):45-56.
56. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in endocrinology. 2018;9:402.
57. Dieter C, Lemos NE, Corrêa NR, Assmann TS, Crispim D. The impact of lncRNAs in diabetes mellitus: a systematic review and in silico analyses. Frontiers in endocrinology. 2021;12:602597.
58. Du C, Liu C, Kang J, Zhao G, Ye Z, Huang S, et al. MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nature immunology. 2009;10(12):1252-9.
59. Sebastiani G, Grieco FA, Spagnuolo I, Galleri L, Cataldo D, Dotta F. Increased expression of microRNA miR‐326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes/metabolism research and reviews. 2011;27(8):862-6.
60. De Jong VM, Van Der Slik AR, Laban S, van't Slot R, Koeleman BP, et al. Survival of autoreactive T lymphocytes by microRNA-mediated regulation of apoptosis through TRAIL and Fas in type 1 diabetes. Genes & Immunity. 2016;17(6):342-8.
61. Hezova R, Slaby O, Faltejskova P, Mikulkova Z, Buresova I, Raja KM, et al. microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cellular immunology. 2010;260(2):70-4.
62. Morán I, Akerman I, Van De Bunt M, Xie R, Benazra M, Nammo T, et al. Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell metabolism. 2012;16(4):435-48.
63. Motterle A, Gattesco S, Caille D, Meda P, Regazzi R. Involvement of long non-coding RNAs in beta cell failure at the onset of type 1 diabetes in NOD mice. Diabetologia. 2015;58:1827-35.
64. Zhang J, Chen LM, Zou Y, Zhang S, Xiong F, Wang CY. Implication of epigenetic factors in the pathogenesis of type 1 diabetes. Chinese Medical Journal. 2021;134(09):1031-42.

Add your comments about this article : Your username or Email:

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb