Volume 16, Issue 3 (volume 16, number 3 2024)                   IJDO 2024, 16(3): 174-185 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Soita K, Kisato V, Barasa E, Mambo F, Were T, Gitonga G et al . Hepatic, Renal and Cardiovascular Biomarker Variability in Type 2 Diabetes Mellitus Patients with Poor Glycemic Control. IJDO 2024; 16 (3) :174-185
URL: http://ijdo.ssu.ac.ir/article-1-887-en.html
Department of Medical Laboratory Sciences, School of Public Health Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya.
Abstract:   (136 Views)
Objective: The main aim of the study was to evaluate and compare the variability of the hepatic, renal and cardiovascular biomarkers in type 2 diabetes mellitus patients with poor glycemic control.
Materials and Methods: An analytical cross-sectional study utilizing random sampling technique was used to recruit 103 consenting participants at the Kakamega county general hospital. Approximately 6mls of blood sample was collected and processed for biomarkers of hepatic, renal and cardiovascular function using spectrophotometry and florescence-immuno detection. Data was analyzed using the IBM SPSS ver. 22 software. Chi-square and Fisher’s exact test were done on categorical variables and Kruskal-Wallis test on the continuous variables. A Bonferroni Post-hoc test was done to determine the differences between the groups.
Results: The study revealed a significant hepatic biomarker variability in gamma glutamyl transferase (GGT) (P= 0.031), Total bilirubin (P< 0.0001), Direct bilirubin (P< 0.0001), albumin (P= 0.001) and Aspartate transaminase/alanine transaminase (AST/ALT) ratio (P< 0.0001). Renal biomarkers including Urea (P= 0.002), potassium (P= 0.0012), sodium (P< 0.0001) and chloride (0.007) showed a significant variability in poor glycemic control. Additionally, Triglycerides (P< 0.0001) and total cholesterol (P= 0.046) levels were significantly elevated in poor glycemic control.
Conclusion: Poor glycemic control causes elevation in GGT, AST/ALT ratio, potassium, triglycerides and total cholesterol while bilirubin, albumin, sodium and chloride are reduced.
 
Full-Text [PDF 535 kb]   (45 Downloads)    
Type of Study: Research | Subject: Special
Received: 2024/02/12 | Accepted: 2024/06/14 | Published: 2024/08/20

References
1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes care. 2010;33(Supplement_1):S62-9. [DOI:10.2337/dc10-S062]
2. Adeyinka A, Kondamudi NP. Hyperosmolar Hyperglycemic Syndrome.http://www.ncbi.nlm.nih.gov/books/NBK482142/
3. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes research and clinical practice. 2017;128:40-50. [DOI:10.1016/j.diabres.2017.03.024]
4. Mohamed SF, Mwangi M, Mutua MK, Kibachio J, Hussein A, Ndegwa Z, et al. Prevalence and factors associated with pre-diabetes and diabetes mellitus in Kenya: results from a national survey. BMC public health. 2018;18:1-1. [DOI:10.1186/s12889-018-6053-x]
5. Alzahrani SH, Baig M, Aashi MM, Al-Shaibi FK, Alqarni DA, Bakhamees WH. Association between glycated hemoglobin (HbA1c) and the lipid profile in patients with type 2 diabetes mellitus at a tertiary care hospital: a retrospective study. Diabetes, metabolic syndrome and obesity: targets and therapy. 2019:1639-44. [DOI:10.2147/DMSO.S222271]
6. Kohnert KD, Heinke P, Vogt L, Salzsieder E. Utility of different glycemic control metrics for optimizing management of diabetes. World journal of diabetes. 2015;6(1):17-29. [DOI:10.4239/wjd.v6.i1.17]
7. Assessment G. 6. Glycemic targets: standards of medical care in diabetes-2022. Diabetes Care. 2022;45:S83. [DOI:10.2337/dc22-S006]
8. Haghighatpanah M, Nejad AS, Haghighatpanah M, Thunga G, Mallayasamy S. Factors that correlate with poor glycemic control in type 2 diabetes mellitus patients with complications. Osong public health and research perspectives. 2018;9(4):167-74. [DOI:10.24171/j.phrp.2018.9.4.05]
9. Shiroya V, Neuhann F, Müller O, Deckert A. Challenges in policy reforms for non-communicable diseases: the case of diabetes in Kenya. Global health action. 2019;12(1):1611243. [DOI:10.1080/16549716.2019.1611243]
10. Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum?. Indian journal of endocrinology and metabolism. 2016;20(4):546-51. [DOI:10.4103/2230-8210.183480]
11. Wanjohi MM. Factors Affecting Glycemic Control Among Type Ii Diabetics Attending Machakos Level Five Outpatient Clinic.(Doctoral dissertation, University of Nairobi).2018.
12. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. Journal of diabetes research. 2018;2018:e3086167. [DOI:10.1155/2018/3086167]
13. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clinical diabetes. 2008;26(2):77-82. [DOI:10.2337/diaclin.26.2.77]
14. Charlton A, Garzarella J, Jandeleit-Dahm KA, Jha JC. Oxidative stress and inflammation in renal and cardiovascular complications of diabetes. Biology. 2020 ;10(1):18. [DOI:10.3390/biology10010018]
15. Tolman KG, Fonseca V, Dalpiaz A, Tan MH. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes care. 2007;30(3):734-43. [DOI:10.2337/dc06-1539]
16. Pálsson R, Patel UD. Cardiovascular complications of diabetic kidney disease. Advances in chronic kidney disease. 2014;21(3):273-80. [DOI:10.1053/j.ackd.2014.03.003]
17. Gowda S, Desai PB, Kulkarni SS, Hull VV, Math AA, Vernekar SN. Markers of renal function tests. North American journal of medical sciences. 2010 ;2(4):170.
18. AL-Bahrani SM, Yassin BA. Lipid Profile and Glycemic Control in Type 2 Diabetic Patients. Arab Board Medical Journal. 2022;23(1):21-7. [DOI:10.4103/abmj.abmj_3_22]
19. Pastakia SD, Nuche-Berenguer B, Pekny CR, Njuguna B, O'Hara EG, Cheng SY, et al. Retrospective assessment of the quality of diabetes care in a rural diabetes clinic in Western Kenya. BMC endocrine disorders. 2018;18:1-9. [DOI:10.1186/s12902-018-0324-5]
20. Otieno FC, Mikhail T, Acharya K, Muga J, Ngugi N, Njenga E. Suboptimal glycemic control and prevalence of diabetes-related complications in Kenyan population with diabetes: cohort analysis of the seventh wave of the International Diabetes Management Practices Study (IDMPS). Endocrine and Metabolic Science. 2021;3:100093. [DOI:10.1016/j.endmts.2021.100093]
21. Choe SA, Kim JY, Ro YS, Cho SI. Women are less likely than men to achieve optimal glycemic control after 1 year of treatment: A multi-level analysis of a Korean primary care cohort. PLoS One. 2018;13(5):e0196719. [DOI:10.1371/journal.pone.0196719]
22. Mamo Y, Bekele F, Nigussie T, Zewudie A. Determinants of poor glycemic control among adult patients with type 2 diabetes mellitus in Jimma University Medical Center, Jimma zone, south west Ethiopia: a case control study. BMC endocrine disorders. 2019;19:1-1. [DOI:10.1186/s12902-019-0421-0]
23. Shamshirgaran SM, Mamaghanian A, Aliasgarzadeh A, Aiminisani N, Iranparvar-Alamdari M, Ataie J. Age differences in diabetes-related complications and glycemic control. BMC endocrine disorders. 2017;17(1):25. [DOI:10.1186/s12902-017-0175-5]
24. Hassan MR, Jamhari MN, Hayati F, Ahmad N, Nawi AM, Sharif KY, et al. Determinants of glycaemic control among type 2 diabetes mellitus patients in Northern State of Kedah, Malaysia: a cross-sectional analysis of 5 years national diabetes registry 2014-2018. Pan African Medical Journal. 2021;39(1):206. [DOI:10.11604/pamj.2021.39.206.30410]
25. Noroozi Karimabad M, Khalili P, Ayoobi F, Esmaeili-Nadimi A, La Vecchia C, Jamali Z. Serum liver enzymes and diabetes from the Rafsanjan cohort study. BMC Endocrine Disorders. 2022;22(1):127. [DOI:10.1186/s12902-022-01042-2]
26. Islam S, Rahman S, Haque T, Sumon AH, Ahmed AM, Ali N. Prevalence of elevated liver enzymes and its association with type 2 diabetes: A cross‐sectional study in Bangladeshi adults. Endocrinology, diabetes & metabolism. 2020;3(2):e00116. [DOI:10.1002/edm2.116]
27. Saligram S, Williams EJ, Masding MG. Raised liver enzymes in newly diagnosed Type 2 diabetes are associated with weight and lipids, but not glycaemic control. Indian journal of endocrinology and metabolism. 2012;16(6):1012-4. [DOI:10.4103/2230-8210.103027]
28. Williams KH, Shackel NA, Gorrell MD, McLennan SV, Twigg SM. Diabetes and nonalcoholic fatty liver disease: a pathogenic duo. Endocrine reviews. 2013;34(1):84-129. [DOI:10.1210/er.2012-1009]
29. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circulation research. 2010;107(9):1058-70. [DOI:10.1161/CIRCRESAHA.110.223545]
30. Gohel MG, Chacko AN. Serum GGT activity and hsCRP level in patients with type 2 diabetes mellitus with good and poor glycemic control: An evidence linking oxidative stress, inflammation and glycemic control. Journal of Diabetes & Metabolic Disorders. 2013;12:1-8. [DOI:10.1186/2251-6581-12-56]
31. Zhu B, Wu X, Bi Y, Yang Y. Effect of bilirubin concentration on the risk of diabetic complications: a meta-analysis of epidemiologic studies. Scientific reports. 2017;7(1):41681. [DOI:10.1038/srep41681]
32. Yang M, Ni C, Chang B, Jiang Z, Zhu Y, Tang Y, et al. Association between serum total bilirubin levels and the risk of type 2 diabetes mellitus. Diabetes research and clinical practice. 2019;152:23-8. [DOI:10.1016/j.diabres.2019.04.033]
33. Fu YY, Kang KJ, Ahn JM, Kim HR, Na KY, Chae DW, et al. Hyperbilirubinemia reduces the streptozotocin-induced pancreatic damage through attenuating the oxidative stress in the Gunn rat. The Tohoku journal of experimental medicine. 2010;222(4):265-73. [DOI:10.1620/tjem.222.265]
34. Erkus E, Aktas G, Kocak MZ, Duman TT, Atak BM. Serum bilirubin level is associated with diabetic control in type 2 diabetes mellitus. Blood Heart Circ. 2018;2(2):1-2. [DOI:10.15761/BHC.1000132]
35. Raupbach J, Ott C, Koenig J, Grune T. Proteasomal degradation of glycated proteins depends on substrate unfolding: Preferred degradation of moderately modified myoglobin. Free Radical Biology and Medicine. 2020;152:516-24. [DOI:10.1016/j.freeradbiomed.2019.11.024]
36. Addai-Mensah O, Annani-Akollor ME, Nsafoah FO, Fondjo LA, Owiredu EW, Danquah KO, et al. Effect of poor glycaemic control on plasma levels and activity of protein C, protein S, and antithrombin III in type 2 diabetes mellitus. PLoS One. 2019;14(9):e0223171. [DOI:10.1371/journal.pone.0223171]
37. Analike RA, Ihim A, Iweanya S, Ogbodo E, Onah C, Asomugha A, et al. Assessment of glycated haemoglobin, total protein and albumin levels in patients with type 2 diabetes mellitus visiting NAUTH, Nnewi. Indian Journal of Pathology and Oncology. 2019;6(4):700-3. [DOI:10.18231/j.ijpo.2019.132]
38. Higgins C. Urea and the clinical value of measuring blood urea concentration. Acutecaretesting Org. 2016;22:1-6.
39. Al-Musawi HS, Al-Lami M, Al-Saadi AH. Assessment of Glycemic Control, Renal Function, and Oxidative Stress Parameters in Type 2 Diabetes MellitusPatients. Iraqi Journal of Science. 2021:4628-38. [DOI:10.24996/ijs.2021.62.12.4]
40. Dutta T, Kudva YC, Persson XM, Schenck LA, Ford GC, Singh RJ, et al. Impact of long-term poor and good glycemic control on metabolomics alterations in type 1 diabetic people. The Journal of Clinical Endocrinology & Metabolism. 2016;101(3):1023-33. [DOI:10.1210/jc.2015-2640]
41. Pipeleers L, Wissing KM, Hilbrands R. Acid-base and electrolyte disturbances in patients with diabetes mellitus. Acta Clinica Belgica. 2019;74(1):28-33. [DOI:10.1080/17843286.2018.1546983]
42. Goia-Nishide K, Coregliano-Ring L, Rangel ÉB. Hyperkalemia in diabetes mellitus setting. Diseases. 2022;10(2):20. [DOI:10.3390/diseases10020020]
43. Sousa AG, de Sousa Cabral JV, El-Feghaly WB, de Sousa LS, Nunes AB. Hyporeninemic hypoaldosteronism and diabetes mellitus: pathophysiology assumptions, clinical aspects and implications for management. World journal of diabetes. 2016;7(5):101. [DOI:10.4239/wjd.v7.i5.101]
44. Coregliano-Ring L, Goia-Nishide K, Rangel ÉB. Hypokalemia in diabetes mellitus setting. Medicina. 2022;58(3):431. [DOI:10.3390/medicina58030431]
45. Unachukwu MN, Engwa GA, Nwalo FN, Attama TJ, Abonyi C, Akaniro-Ejim EN, et al. Influence of type 2 diabetes on serum electrolytes and renal function indices in patients. Journal of Clinical and Diagnostic Research. 2018;12(6):BC13 - BC16.
46. Wang S, Hou X, Liu Y, Lu H, Wei L, Bao Y, Jia W. Serum electrolyte levels in relation to macrovascular complications in Chinese patients with diabetes mellitus. Cardiovascular diabetology. 2013;12:1-0. [DOI:10.1186/1475-2840-12-146]
47. Khan RN, Saba F, Kausar SF, Siddiqui MH. Pattern of electrolyte imbalance in Type 2 diabetes patients: Experience from a tertiary care hospital. Pakistan Journal of Medical Sciences. 2019;35(3):797. [DOI:10.12669/pjms.35.3.844]
48. Karuppan A, Sahay Mi, Ravindranathan R, Haripriya P, Sriram Dk, George M. Electrolyte Disturbances among Diabetic Patients Admitted in a Multi-Specialty Hospital in Southern India. Journal of Clinical & Diagnostic Research. 2019;13(2):OC12-OC15. [DOI:10.7860/JCDR/2019/38487.12573]
49. Wang S, Ji X, Zhang Z, Xue F. Relationship between lipid profiles and glycemic control among patients with type 2 diabetes in Qingdao, China. International Journal of Environmental Research and Public Health. 2020;17(15):5317. [DOI:10.3390/ijerph17155317]
50. Mostofizadeh N, Hashemipour M, Roostazadeh M, Hashemi-Dehkordi E, Shahsanai A, Reisi M. The impact of poor glycemic control on lipid profile variables in children with type 1 diabetes mellitus. Journal of education and health promotion. 2019;8(1):6. [DOI:10.4103/jehp.jehp_194_17]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb