Volume 16, Issue 4 (12-2024)                   IJDO 2024, 16(4): 221-230 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Omprakash S V, Sekaran S, Madhivanan N, Nivean P D, Sambanthan L. Correspondence between OCT Characteristics and Biochemical Parameters in Diabetic Macular Edema. IJDO 2024; 16 (4) :221-230
URL: http://ijdo.ssu.ac.ir/article-1-908-en.html
MBBS., DO., Secondary DNB Resident, M. N. Eye Hospital, Chennai- 600021, India.
Abstract:   (132 Views)
Objective: The purpose of this study is to evaluate the potential association between peripheral blood parameters and the morphological characteristics of retinal imaging obtained via spectral-domain optical coherence tomography (SD-OCT) in patients with treatment-naïve diabetic macular edema (DME).
Materials and Methods: This cross-sectional study included 100 patients with treatment-naïve DME. All participants underwent spectral-domain optical coherence tomography (Optovue) and fundus photography. Peripheral blood samples were collected to assess complete blood count (CBC), glycated hemoglobin (HbA1c), blood glucose, serum urea, serum creatinine, and lipid profile.
Results: Central subfield thickness (CST) was significantly associated with serum HDL (P= 0.003). Intraretinal fluid (IRF) was linked to serum triglycerides (P=0.006), serum VLDL (P=0.001), and cholesterol-to-HDL ratio (P= 0.001). Subretinal fluid (SRF) showed an association with blood glucose (P= 0.028). Hyperreflective foci (HF) were related to total blood count (P= 0.001), monocyte count (P= 0.001), cholesterol-to-HDL ratio (P= 0.045), LDL-to-HDL ratio (P= 0.003), and serum urea (P= 0.051). Disorganization of the retinal inner layers (DRIL) correlated with total blood count (P=0.047), lymphocyte count (P= 0.008), blood glucose (P= 0.007), and LDL-to-HDL ratio (P= 0.046). Epiretinal membrane (ERM) was associated with blood glucose (P= 0.001), total cholesterol (P= 0.022), serum LDL (P= 0.025), cholesterol-to-HDL ratio (P= 0.013), and LDL-to-HDL ratio (P= 0.008). Ellipsoid zone (EZ) and external limiting membrane (ELM) disruptions were linked to blood glucose, serum LDL, and VLDL. Hard exudates correlated with blood cell counts, glucose, HbA1c, urea, and creatinine (P< 0.05).
CONCLUSION: Systemic factors are significantly associated with retinal morphological patterns in DME, highlighting the potential for modifying these factors to influence disease progression and treatment response.
 
Full-Text [PDF 574 kb]   (49 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/12/15 | Accepted: 2024/09/20 | Published: 2024/12/16

References
1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes care. 2004;27(5):1047-53. [DOI:10.2337/diacare.27.5.1047]
2. Engerman RL, Kern TS. Retinopathy in animal models of diabetes. Diabetes/metabolism reviews. 1995;11(2):109-20. [DOI:10.1002/dmr.5610110203]
3. Klein R, Klein BE, Moss SE, Cruickshanks KJ. The Wisconsin epidemiologic study of diabetic retinopathy XV: the long-term incidence of macular edema. Ophthalmology. 1995;102(1):7-16. [DOI:10.1016/S0161-6420(95)31052-4https://doi.org/10.1016/S0161-6420(97)30368-6]
4. Dimitriou E, Sergentanis TN, Lambadiari V, Theodossiadis G, Theodossiadis P, Chatziralli I. Correlation between imaging morphological findings and laboratory biomarkers in patients with diabetic macular edema. Journal of Diabetes Research. 2021;2021(1):6426003. [DOI:10.1155/2021/6426003]
5. Zhou J, Song S, Zhang Y, Jin K, Ye J. OCT-based biomarkers are associated with systemic inflammation in patients with treatment-naïve diabetic macular edema. Ophthalmology and Therapy. 2022;11(6):2153-67. [DOI:10.1007/s40123-022-00576-x]
6. You QS, Tsuboi K, Guo Y, Wang J, Flaxel CJ, Bailey ST, et al. Comparison of central macular fluid volume with central subfield thickness in patients with diabetic macular edema using optical coherence tomography angiography. JAMA ophthalmology. 2021;139(7):734-41. [DOI:10.1001/jamaophthalmol.2021.1275]
7. Waheed NK, Duker JS. OCT in the management of diabetic macular edema. Current Ophthalmology Reports. 2013;1(3):128-33. [DOI:10.1007/s40135-013-0019-z]
8. Figueras-Roca M, Molins B, Sala-Puigdollers A, Matas J, Vinagre I, Ríos J, et al. Peripheral blood metabolic and inflammatory factors as biomarkers to ocular findings in diabetic macular edema. PLoS One. 2017;12(3):e0173865. [DOI:10.1371/journal.pone.0173865]
9. Serra R, Coscas F, Boulet JF, Cabral D, Tran TH, Solinas G, et al. Predictive Factors of Visual Outcome in Treatment-Naïve Diabetic Macular Edema: Preliminary Results from the Clinical Study "FOVEA". Journal of Clinical Medicine. 2023;12(12):3870. [DOI:10.3390/jcm12123870]
10. Chung YR, Kim YH, Ha SJ, Byeon HE, Cho CH, Kim JH, et al. Role of inflammation in classification of diabetic macular edema by optical coherence tomography. Journal of Diabetes Research. 2019;2019(1):8164250. [DOI:10.1155/2019/8164250]
11. Park J, Felfeli T, Kherani IZ, Altomare F, Chow DR, Wong DT. Prevalence and clinical implications of subretinal fluid in retinal diseases: a real-world cohort study. BMJ Open Ophthalmology. 2023;8(1):e001214. [DOI:10.1136/bmjophth-2022-001214]
12. Ozdemir H, Karacorlu M, Karacorlu S. Serous macular detachment in diabetic cystoid macular oedema. Acta Ophthalmologica Scandinavica. 2005;83(1):63-6. [DOI:10.1111/j.1600-0420.2005.00387.x]
13. Yamaguchi Y, Otani T, Kishi S. Serous macular detachment in branch retinal vein occlusion. Retina. 2006;26(9):1029-33. [DOI:10.1097/01.iae.0000254893.94013.16]
14. Davoudi S, Papavasileiou E, Roohipoor R, Cho H, Kudrimoti S, Hancock H, et al. Optical coherence tomography characteristics of macular edema and hard exudates and their association with lipid serum levels in type 2 diabetes. Retina. 2016;36(9):1622-9. [DOI:10.1097/IAE.0000000000001022]
15. Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C, et al. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology. 2009;116(5):914-20. [DOI:10.1016/j.ophtha.2008.12.039]
16. Ota M, Nishijima K, Sakamoto A, Murakami T, Takayama K, Horii T, et al. Optical coherence tomographic evaluation of foveal hard exudates in patients with diabetic maculopathy accompanying macular detachment. Ophthalmology. 2010;117(10):1996-2002. [DOI:10.1016/j.ophtha.2010.06.019]
17. Midena E, Torresin T, Schiavon S, Danieli L, Polo C, Pilotto E, et al. The disorganization of retinal inner layers is correlated to Müller cells impairment in diabetic macular edema: an imaging and omics study. International Journal of Molecular Sciences. 2023;24(11):9607. [DOI:10.3390/ijms24119607]
18. Chew EY, Klein ML, Ferris FL, Remaley NA, Murphy RP, Chantry K, et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy: Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Archives of ophthalmology. 1996;114(9):1079-84. [DOI:10.1001/archopht.1996.01100140281004]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb