1. Marefati N, Abdi T, Beheshti F, Vafaee F, Mahmoudabady M, Hosseini M. Zingiber officinale (Ginger) hydroalcoholic extract improved avoidance memory in rat model of streptozotocin-induced diabetes by regulating brain oxidative stress. Hormone Molecular Biology and Clinical Investigation. 2022;43(1):15-26. [
DOI:10.1515/hmbci-2021-0033]
2. Oliveira WH, Braga CF, Lós DB, Araújo SM, França MR, Duarte-Silva E, et al. Metformin prevents p-tau and amyloid plaque deposition and memory impairment in diabetic mice. Experimental Brain Research. 2021;239:2821-39. [
DOI:10.1007/s00221-021-06176-8]
3. Huerta-Cervantes M, Peña-Montes DJ, Montoya-Pérez R, Trujillo X, Huerta M, López-Vázquez MÁ, et al. Gestational diabetes triggers oxidative stress in hippocampus and cerebral cortex and cognitive behavior modifications in rat offspring: Age-and sex-dependent effects. Nutrients. 2020;12(2):376. [
DOI:10.3390/nu12020376]
4. Natrus L, Osadchuk Y, Lisakovska O, Roch T, Babel N, Klys Y, et al. Regulation of the apoptosis/autophagy switch by propionic acid in ventromedial hypothalamus of rats with type 2 diabetes mellitus. Heliyon. 2022;8(11):e11529. [
DOI:10.1016/j.heliyon.2022.e11529]
5. Schaeffer EL, Novaes BA, da Silva ER, Skaf HD, Mendes-Neto ÁG. Strategies to promote differentiation of newborn neurons into mature functional cells in Alzheimer brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2009;33(7):1087-102. [
DOI:10.1016/j.pnpbp.2009.06.024]
6. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. science. 2003;301(5634):805-9. [
DOI:10.1126/science.1083328]
7. Oliveira DR, Sanada PF, Saragossa FA, Innocenti LR, Oler G, Cerutti JM, et al. Neuromodulatory property of standardized extract Ginkgo biloba L.(EGb 761) on memory: behavioral and molecular evidence. Brain Research. 2009;1269:68-89. [
DOI:10.1016/j.brainres.2008.11.105]
8. Çifci A, Tayman C, Yakut Hİ, Halil H, Cakir E, Cakir U, Aydemir S. Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia andinflammation. Turkish journal of medical sciences. 2018;48(4):892-900. [
DOI:10.3906/sag-1803-223]
9. Su P, Veeraraghavan VP, Krishna Mohan S, Lu W. A ginger derivative, zingerone-a phenolic compound-induces ROS‐mediated apoptosis in colon cancer cells (HCT‐116). Journal of biochemical and molecular toxicology. 2019;33(12):e22403. [
DOI:10.1002/jbt.22403]
10. Mutthuraj D, Vinutha T, Gopenath TS, Kaginelli SB, Karthikeyan M, Ashok G, Ranjith MS, Palanisamy P, Basalingappa KM. Inhibition of Pro-Inflammatory Molecules by Ginger (Zingiber officinale Roscoe) and its Anti-Inflammatory Effects on Arthritis Patients. Journal of Drug Delivery & Therapeutics. 2020;10. [
DOI:10.22270/jddt.v10i2-s.3963]
11. Choi JG, Kim SY, Jeong M, Oh MS. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacology & Therapeutics. 2018;182:56-69. [
DOI:10.1016/j.pharmthera.2017.08.010]
12. Zarei M, Uppin V, Acharya P, Talahalli R. Ginger and turmeric lipid-solubles attenuate heated oil-induced oxidative stress in the brain via the upregulation of NRF2 and improve cognitive function in rats. Metabolic Brain Disease. 2021;36:225-38. [
DOI:10.1007/s11011-020-00642-y]
13. Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death & Differentiation. 2018;25(1):27-36. [
DOI:10.1038/cdd.2017.161]
14. Das SN, Khare P, Singh MK, Sharma SC. Correlation of cyclin D1 expression with aggressive DNA pattern in patients with tobacco-related intraoral squamous cell carcinoma. Indian journal of medical research. 2011;133(4):381-6.
15. Huang SF, Cheng SD, Chuang WY, Chen IH, Liao CT, Wang HM, et al. Cyclin D1 overexpression and poor clinical outcomes in Taiwanese oral cavity squamous cell carcinoma. World journal of surgical oncology. 2012;10(1):40. [
DOI:10.1186/1477-7819-10-40]
16. Babaee A, Vaghefi SH, Soltani SD, Shekaari MA, Shahrokhi N, Basiri M. Hippocampal astrocyte response to melatonin following neural damage induction in rats. Basic and Clinical Neuroscience. 2021;12(2):177. [
DOI:10.32598/bcn.12.2.986.1]
17. Shanmugam KR, Mallikarjuna K, Kesireddy N, Reddy KS. Neuroprotective effect of ginger on anti-oxidant enzymes in streptozotocin-induced diabetic rats. Food and chemical toxicology. 2011;49(4):893-7. [
DOI:10.1016/j.fct.2010.12.013]
18. El-Akabawy G, El-Kholy W. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats. Annals of anatomy-Anatomischer anzeiger. 2014;196(2-3):119-28. [
DOI:10.1016/j.aanat.2014.01.003]
19. Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto KY, Matsuoka TA, et al. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxidants & redox signaling. 2007;9(3):355-66. [
DOI:10.1089/ars.2006.1465]
20. Mortezazadeh F, Fathabady FF, Norouzian M, Noureddin S, Rouholamini SE, Babaee A, et al. Investigating the effect of tumor necrosis factor Alpha on placenta and gene related bone formation of newborn mice. Journal of Research in Medical and Dental Science. 2018;6(5):133-8.
21. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M. Targeting free radicals in oxidative stress-related human diseases. Trends in pharmacological sciences. 2017;38(7):592-607. [
DOI:10.1016/j.tips.2017.04.005]
22. Al-Amin ZM, Thomson M, Al-Qattan KK, Peltonen-Shalaby R, Ali M. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. British journal of nutrition. 2006;96(4):660-6. [
DOI:10.1079/BJN20061849]
23. Jafarzadeh A, Mohammadi-Kordkhayli M, Ahangar-Parvin R, Azizi V, Khoramdel-Azad H, Shamsizadeh A, et al. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease. Journal of neuroimmunology. 2014;276(1-2):80-8. [
DOI:10.1016/j.jneuroim.2014.08.614]