1. Machado MV. Aerobic exercise in the management of metabolic dysfunction associated fatty liver disease. Diabetes, Metabolic Syndrome and Obesity. 2021;14:3627-45.
2. Gerber LH, Weinstein A, Pawloski L. Role of exercise in optimizing the functional status of patients with nonalcoholic fatty liver disease. Clinics in liver disease. 2014;18(1):113-27.
3. Sadria M, Layton AT. Interactions among mTORC, AMPK and SIRT: a computational model for cell energy balance and metabolism. Cell Communication and Signaling. 2021;19(1):57.
4. Cantó C, Auwerx J. PGC-1α, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Current opinion in lipidology. 2009;20(2):98-105.
5. Hoppeler H. The different relationship of V̇O2 to muscle mitochondria in humans and quadrupedal animals. Respiration physiology. 1990;80(2-3):137-45.
6. Hardie DG, Hawley SA, Scott JW. AMP‐activated protein kinase-development of the energy sensor concept. The Journal of physiology. 2006;574(1):7-15.
7. Lin SJ, Ford E, Haigis M, Liszt G, Guarente L. Calorie restriction extends yeast life span by lowering the level of NADH. Genes & development. 2004;18(1):12-6.
8. Horkai D, Hadj-Moussa H, Whale AJ, Houseley J. Dietary change without caloric restriction maintains a youthful profile in ageing yeast. PLoS Biology. 2023;21(8):e3002245.
9. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado de Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature. 2004;429(6993):771-6.
10. Vaziri H, Dessain SK, Eaton EN, Imai SI, Frye RA, Pandita TK,et al. hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell. 2001;107(2):149-59.
11. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. science. 2004;303(5666):2011-5.
12. Zhang J. The direct involvement of SirT1 in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. Journal of Biological Chemistry. 2007;282(47):34356-64.
13. Fröjdö S, Durand C, Molin L, Carey AL, El-Osta A, Kingwell BA, et al. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Molecular and cellular endocrinology. 2011;335(2):166-76.
14. Hoffmann C, Schneeweiß P, Kappler L, Randrianarisoa E, Schnauder G, Machann J, et al. Comparison of exercise training effects on mitochondrial substrate oxidation of skeletal muscle and adipose tissue of humans. Diabetologie und Stoffwechsel. 2019 ;14(S 01):EP-49.
15. Da Luz G, Frederico MJ, da Silva S, Vitto MF, Cesconetto PA, de Pinho RA, et al. Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats. European journal of applied physiology. 2011;111(9):2015-23.
16. Nunes PR, Martins FM, Souza AP, Carneiro MA, Orsatti CL, Michelin MA, et al. Effect of high-intensity interval training on body composition and inflammatory markers in obese postmenopausal women: a randomized controlled trial. Menopause. 2019;26(3):256-64.
17. Steckling FM, Farinha JB, Figueiredo FD, Santos DL, Bresciani G, Kretzmann NA, et al. High-intensity interval training improves inflammatory and adipokine profiles in postmenopausal women with metabolic syndrome. Archives of physiology and biochemistry. 2019;125(1):85-91.
18. Poblete Aro CE, Russell Guzmán JA, Soto Muñoz ME, Villegas González BE. Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave. 2015;15(7):e6212.
19. Yu P, Zhu Z, He J, Gao B, Chen Q, Wu Y, et al. Effects of high-intensity interval training, moderate-intensity continuous training, and guideline-based physical activity on cardiovascular metabolic markers, cognitive and motor function in elderly sedentary patients with type 2 diabetes (HIIT-DM): a protocol for a randomized controlled trial. Frontiers in Aging Neuroscience. 2023;15:1211990.
20. Gurd BJ, Perry CG, Heigenhauser GJ, Spriet LL, Bonen A. High-intensity interval training increases SIRT1 activity in human skeletal muscle. Applied Physiology, Nutrition, and Metabolism. 2010;35(3):350-7.
21. Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, et al. Exercise training promotes SIRT1 activity in aged rats. Rejuvenation research. 2008;11(1):139-50.
22. Lai CH, Ho TJ, Kuo WW, Day CH, Pai PY, Chung LC, et al. Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. Age. 2014;36(5):9706.
23. Juan CG, Matchett KB, Davison GW. A systematic review and meta-analysis of the SIRT1 response to exercise. Scientific Reports. 2023;13(1):14752.
24. Liu L, Zhang J, Cui R, Wang N, Zhang Y, Liu L, et al. SIRT1 and exercise-induced bone metabolism: a regulatory nexus. Frontiers in Cell and Developmental Biology. 2025;13:1522821.
25. Huh JY, Mougios V, Kabasakalis A, Fatouros I, Siopi A, Douroudos II, et al. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. The Journal of Clinical Endocrinology & Metabolism. 2014;99(11):E2154-61.
26. Pakgohar A, Mehrannia H. Sample size calculation in clinical trial and animal studies. Iranian Journal of diabetes and Obesity.2024;16(1):42-50.
27. Høydal MA, Wisløff U, Kemi OJ, Ellingsen Ø. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. European Journal of Preventive Cardiology. 2007;14(6):753-60.
28. Aparicio VA, Nebot E, Porres JM, Ortega FB, Heredia JM, López-Jurado M, et al. Effects of high-whey-protein intake and resistance training on renal, bone and metabolic parameters in rats. British Journal of Nutrition. 2011;105(6):836-45.
29. Haghighi AH, Bandali MR, Askari R, Shahrabadi H, Barone R, Bei R, et al. The effects of different exercise training protocols on mitochondrial dynamics in skeletal and cardiac muscles of Wistar rats. Journal of Orthopaedic Surgery and Research. 2025;20(1):395.
30. Kotas ME, Gorecki MC, Gillum MP. Sirtuin-1 is a nutrient-dependent modulator of inflammation. Adipocyte. 2013;2(2):113-8.
31. Juan CG, Matchett KB, Davison GW. A systematic review and meta-analysis of the SIRT1 response to exercise. Scientific Reports. 2023;13(1):14752.
32. Khalafi M, Mohebbi H, Symonds ME, Karimi P, Akbari A, Tabari E, et al. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients. 2020;12(4):925.
33. Soltani M, Fathei M, Ghahremani Moghaddam M. The effect of eight weeks of water training on Sirt1, Pgc-1α and body fat percentage in obese men. Journal of Babol University of Medical Sciences. 2018;20(9):55-60.
34. Akbari A, Mohebbi H, Tabari E. The effects of high fat diet-induced obesity and interval and continuous exercise training on visceral fat SIRT1 and insulin resistance in male rats. Iranian Journal of Diabetes and Lipid Disorders. 2020;19(2):93-102.(in Persian)
35. Gillum MP, Kotas ME, Erion DM, Kursawe R, Chatterjee P, Nead KT, et al. SirT1 regulates adipose tissue inflammation. Diabetes. 2011;60(12):3235-45.
36. Song G, Chen J, Deng Y, Sun L, Yan Y. TMT labeling reveals the effects of exercises on the proteomic characteristics of the subcutaneous adipose tissue of growing High-Fat-Diet-Fed rats. ACS omega. 2023;8(26):23484-500.