Volume 17, Issue 4 (10-2025)                   IJDO 2025, 17(4): 283-290 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Azhdari M, Talepour Ardakani H. Nutrigenomics and Food Safety in Chronic Disease Prevention: From Bioactive Nutrients to Contaminants. IJDO 2025; 17 (4) :283-290
URL: http://ijdo.ssu.ac.ir/article-1-996-en.html
Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Abstract:   (137 Views)
Nutrigenomics explore how foods and bioactive compounds interact with our genes and epigenome to influence overall health, while food safety examines how dietary hazards can disrupt these pathways. Integrating both fields aids in the prevention and management of chronic non-communicable diseases (NCDs). Nutrients such as polyphenols, omega-3 fatty acids, and methyl donors can modulate key epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNA regulation, helping protect against metabolic disorders and some types of cancer. Conversely, exposure to harmful substances, including mycotoxins, heavy metals, endocrine-disrupting chemicals, and food processing by-products, can trigger oxidative stress, disturb the gut microbiome, and alter epigenetic regulation, increasing disease risk.
This narrative, non-systematic review synthesizes evidence published between 2000 and 2025, emphasizing the surge in studies since 2020. Relevant articles were retrieved from PubMed, Scopus, Web of Science, and Google Scholar using combinations of keywords related to nutrigenomics, epigenetics, food safety, and chronic diseases. In total, 235 publications were analyzed, highlighting nutrigenomics and food safety as an emerging scientific hotspot.
Recent advances in multi-omics and microbiome research have enabled precision nutrition approaches and more accurate risk assessment models for NCDs. Despite challenges such as inconsistent methodologies and limited longitudinal data, integrating nutrigenomics with food safety offers a promising approach for improving metabolic health, achieving sustainable weight management, and reducing the global burden of chronic disease. Priorities include large-scale clinical trials, standardized omics pipelines, and validated biomarkers to ensure accessibility to and translational impact in public health.
 
Full-Text [PDF 768 kb]   (117 Downloads)    
Type of Study: Research | Subject: Special
Received: 2025/09/9 | Accepted: 2025/10/20 | Published: 2025/10/30

References
1. Magliano DJ, Boyko EJ. IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS [Internet]. 10th ed. Brussels: International Diabetes Federation. 2021;35914061.
2. Franzago M, Santurbano D, Vitacolonna E, Stuppia L. Genes and diet in the prevention of chronic diseases in future generations. International journal of molecular sciences. 2020;21(7):2633. [DOI:10.3390/ijms21072633]
3. Yurko-Mauro K, Van Elswyk M, Teo L. A scoping review of interactions between omega-3 long-chain polyunsaturated fatty acids and genetic variation in relation to cancer risk. Nutrients. 2020;12(6):1647. [DOI:10.3390/nu12061647]
4. Heianza Y, Qi L. Gene-diet interaction and precision nutrition in obesity. International journal of molecular sciences. 2017;18(4):787. [DOI:10.3390/ijms18040787]
5. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biological chemistry. 2014;395(2):203-30. [DOI:10.1515/hsz-2013-0241]
6. Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, Slavkovich V,et al. A dose-response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Environmental health perspectives. 2013;121(11-12):1306-12. [DOI:10.1289/ehp.1206421]
7. Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, et al. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduction and Targeted Therapy. 2023;8(1):98. [DOI:10.1038/s41392-023-01333-7]
8. Lagoumintzis G, Patrinos GP. Triangulating nutrigenomics, metabolomics and microbiomics toward personalized nutrition and healthy living. Human Genomics. 2023;17(1):109. [DOI:10.1186/s40246-023-00561-w]
9. Corbin KD, Carnero EA, Dirks B, Igudesman D, Yi F, Marcus A, et al. Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial. Nature communications. 2023;14(1):3161. [DOI:10.1038/s41467-023-38778-x]
10. Mann ER, Lam YK, Uhlig HH. Short-chain fatty acids: linking diet, the microbiome and immunity. Nature Reviews Immunology. 2024;24(8):577-95. [DOI:10.1038/s41577-024-01014-8]
11. Nadiger N, Veed JK, Chinya Nataraj P, Mukhopadhyay A. DNA methylation and type 2 diabetes: a systematic review. Clinical epigenetics. 2024;16(1):67. [DOI:10.1186/s13148-024-01670-6]
12. Verza FA, Das U, Fachin AL, Dimmock JR, Marins M. Roles of histone deacetylases and inhibitors in anticancer therapy. Cancers. 2020;12(6):1664. [DOI:10.3390/cancers12061664]
13. Sobral AF, Cunha A, Costa I, Silva-Carvalho M, Silva R, Barbosa DJ. Environmental xenobiotics and epigenetic modifications: Implications for human health and disease. Journal of Xenobiotics. 2025;15(4):118. [DOI:10.3390/jox15040118]
14. Nilsson EE, Ben Maamar M, Skinner MK. Role of epigenetic transgenerational inheritance in generational toxicology. Environmental epigenetics. 2022;8(1):dvac001. [DOI:10.1093/eep/dvac001]
15. Borsoi FT, Neri-Numa IA, de Oliveira WQ, de Araújo FF, Pastore GM. Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. Food Chemistry: Molecular Sciences. 2023 ;6:100155. [DOI:10.1016/j.fochms.2022.100155]
16. Green BN, Johnson CD, Adams A. Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. Journal of chiropractic medicine. 2006;5(3):101-17. [DOI:10.1016/S0899-3467(07)60142-6]
17. Crider KS, Bailey LB, Berry RJ. Folic acid food fortification-its history, effect, concerns, and future directions. Nutrients. 2011;3(3):370-84. [DOI:10.3390/nu3030370]
18. Choi SW, Friso S. Modulation of DNA methylation by one-carbon metabolism: a milestone for healthy aging. Nutrition Research and Practice. 2023;17(4):597-615. [DOI:10.4162/nrp.2023.17.4.597]
19. Richmond RC, Sharp GC, Herbert G, Atkinson C, Taylor C, Bhattacharya S, et al. The long-term impact of folic acid in pregnancy on offspring DNA methylation: follow-up of the Aberdeen Folic Acid Supplementation Trial (AFAST). International Journal of Epidemiology. 2018;47(3):928-37. [DOI:10.1093/ije/dyy032]
20. Joubert BR, Den Dekker HT, Felix JF, Bohlin J, Ligthart S, Beckett E, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nature communications. 2016;7(1):10577. [DOI:10.1038/ncomms10577]
21. Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary sulforaphane in cancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxidants & redox signaling. 2015;22(16):1382-424. [DOI:10.1089/ars.2014.6097]
22. Mérida DM, Rey-García J, Moreno-Franco B, Guallar-Castillón P. Acrylamide Exposure and Cardiovascular Risk: A Systematic Review. Nutrients. 2024;16(24):4279. [DOI:10.3390/nu16244279]
23. Tecchio Borsoi F, Ferreira Alves L, Neri-Numa IA, Geraldo MV, Pastore GM. A multi-omics approach to understand the influence of polyphenols in ovarian cancer for precision nutrition: a mini-review. Critical reviews in food science and nutrition. 2025;65(6):1037-54. [DOI:10.1080/10408398.2023.2287701]
24. He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. Environmental Pollution. 2024;357:124447. [DOI:10.1016/j.envpol.2024.124447]
25. Rajendran P, Abdelsalam SA, Renu K, Veeraraghavan V, Ben Ammar R, Ahmed EA. Polyphenols as potent epigenetics agents for cancer. International journal of molecular sciences. 2022;23(19):11712. [DOI:10.3390/ijms231911712]
26. Cariati F, Carbone L, Conforti A, Bagnulo F, Peluso SR, Carotenuto C, et al. Bisphenol A-induced epigenetic changes and its effects on the male reproductive system. Frontiers in endocrinology. 2020;11:453. [DOI:10.3389/fendo.2020.00453]
27. Yang R, Xu Y, Zhu F, Ma X, Fan T, Wang HL. Gut microbiome, a potential modulator of neuroepigenome. The Journal of Nutritional Biochemistry. 2025:109961. [DOI:10.1016/j.jnutbio.2025.109961]
28. Perlmutter A, Bland JS, Chandra A, Malani SS, Smith R, Mendez TL, et al. The impact of a polyphenol-rich supplement on epigenetic and cellular markers of immune age: a pilot clinical study. Frontiers in Nutrition. 2024;11:1474597. [DOI:10.3389/fnut.2024.1474597]
29. Ren ZQ, Zheng SY, Sun Z, Luo Y, Wang YT, Yi P, et al. Resveratrol: Molecular Mechanisms, Health Benefits, and Potential Adverse Effects. MedComm. 2025;6(6):e70252. [DOI:10.1002/mco2.70252]
30. Gao F, Jiao H, Wang X, Zhang D, Zhou S. Curcumin and neuroplasticity: epigenetic mechanisms underlying cognitive enhancement in aging and neurodegenerative disorders. Frontiers in Aging Neuroscience. 2025;17:1592280. [DOI:10.3389/fnagi.2025.1592280]
31. Sousa-Filho CP, Silva V, Bolin AP, Rocha AL, Otton R. Green tea actions on miRNAs expression-An update. Chemico-Biological Interactions. 2023;378:110465. [DOI:10.1016/j.cbi.2023.110465]
32. Chuammitri P, Srikok S, Saipinta D, Boonyayatra S. The effects of quercetin on microRNA and inflammatory gene expression in lipopolysaccharide-stimulated bovine neutrophils. Veterinary World. 2017;10(4):403. [DOI:10.14202/vetworld.2017.403-410]
33. Zhou B, Zheng B, Wu W. The ncRNAs involved in the regulation of abiotic stress-induced anthocyanin biosynthesis in plants. Antioxidants. 2023;13(1):55. [DOI:10.3390/antiox13010055]
34. Aljasir S, Eid NM, Volpi EV, Tewfik I. Nutrigenomics-guided lifestyle intervention programmes: A critical scoping review with directions for future research. Clinical Nutrition ESPEN. 2024;64:296-306. [DOI:10.1016/j.clnesp.2024.10.149]
35. Alam MS, Anwar MJ, Maity MK, Azam F, Jaremko M, Emwas AH. The dynamic role of curcumin in mitigating human illnesses: recent advances in therapeutic applications. Pharmaceuticals. 2024;17(12):1674. [DOI:10.3390/ph17121674]
36. Hajizadeh-Sharafabad F, Zahabi ES, Malekahmadi M, Zarrin R, Alizadeh M. Carotenoids supplementation and inflammation: A systematic review and meta-analysis of randomized clinical trials. Critical Reviews in Food Science and Nutrition. 2022;62(29):8161-77. [DOI:10.1080/10408398.2021.1925870]
37. Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell metabolism. 2019;29(5):1028-44. [DOI:10.1016/j.cmet.2019.03.009]
38. Zhou X, Zhang X, Yu J. Gut mycobiome in metabolic diseases: mechanisms and clinical implication. biomedical journal. 2024 Jun 1;47(3):100625. [DOI:10.1016/j.bj.2023.100625]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY 4.0 | Iranian Journal of Diabetes and Obesity

Designed & Developed by : Yektaweb